A198062
Array read by antidiagonals, m>=0, n>=0, k>=0, A(m, n, k) = sum{j=0..m} sum{i=0..m} (-1)^(j+i)*C(i,j)*n^j*k^(m-j).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 4, 2, 1, 0, 1, 1, 8, 3, 2, 1, 0, 1, 1, 16, 4, 4, 3, 1, 0, 1, 1, 32, 5, 8, 9, 3, 1, 0, 1, 1, 64, 6, 16, 27, 7, 3, 1, 0, 1, 1, 128, 7, 32, 81, 15, 7, 3, 1, 0, 1, 1, 256, 8, 64, 243, 31, 15, 9, 4, 1, 0, 1, 1, 512, 9
Offset: 0
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
-------------------------------------------------
[0] 1 1 1 1 1 1 1 1 1 1 A000012
[1] 0 1 1 2 2 2 3 3 3 3 A003056
[2] 0 1 1 4 3 4 9 7 7 9 A073254
[3] 0 1 1 8 4 8 27 15 15 27 A198063
[4] 0 1 1 16 5 16 81 31 31 81 A198064
[5] 0 1 1 32 6 32 243 63 63 243 A198065
-
A198062_RowAsTriangle := proc(m) local pow; pow :=(a,b)->`if`(a=0 and b=0,1,a^b): proc(n, k) local i, j; add(add((-1)^(j + i)*binomial(i, j)*pow(n, j)* pow(k, m-j), i=0..m),j=0..m) end: end:
for m from 0 to 2 do seq(print(seq(A198062_RowAsTriangle(m)(n,k),k=0..n)),n=0..5) od;
-
max = 9; RowAsTriangle[m_][n_, k_] := Module[{pow}, pow[a_, b_] := If[a == 0 && b == 0, 1, a^b]; Module[{i, j}, Sum[Sum[(-1)^(j+i)*Binomial[i, j]*pow[n, j]*pow[k, m-j], {i, 0, m}], {j, 0, m}]]]; t = Flatten /@ Table[RowAsTriangle[m][n, k], {m, 0, max}, {n, 0, max}, {k, 0, n}]; Table[t[[n-k+1, k+1]], {n, 0, max}, {k, 0, n }] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)
A335340
North-East paths from (0,0) to (n,n) with k cyclic descents.
Original entry on oeis.org
2, 4, 2, 6, 12, 2, 8, 36, 24, 2, 10, 80, 120, 40, 2, 12, 150, 400, 300, 60, 2, 14, 252, 1050, 1400, 630, 84, 2, 16, 392, 2352, 4900, 3920, 1176, 112, 2, 18, 576, 4704, 14112, 17640, 9408, 2016, 144, 2, 20, 810, 8640, 35280, 63504, 52920, 20160, 3240, 180, 2
Offset: 1
The table starts as
2,
4, 2
6, 12, 2
8, 36, 24, 2
10, 80, 120, 40, 2
12, 150, 400, 300, 60, 2
A344563
T(n, k) = binomial(n - 1, k - 1) * binomial(n, k) * 2^k, T(0, 0) = 1. Triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, 0, 4, 4, 0, 6, 24, 8, 0, 8, 72, 96, 16, 0, 10, 160, 480, 320, 32, 0, 12, 300, 1600, 2400, 960, 64, 0, 14, 504, 4200, 11200, 10080, 2688, 128, 0, 16, 784, 9408, 39200, 62720, 37632, 7168, 256, 0, 18, 1152, 18816, 112896, 282240, 301056, 129024, 18432, 512
Offset: 0
[0] 1;
[1] 0, 2;
[2] 0, 4, 4;
[3] 0, 6, 24, 8;
[4] 0, 8, 72, 96, 16;
[5] 0, 10, 160, 480, 320, 32;
[6] 0, 12, 300, 1600, 2400, 960, 64;
[7] 0, 14, 504, 4200, 11200, 10080, 2688, 128;
[8] 0, 16, 784, 9408, 39200, 62720, 37632, 7168, 256;
[9] 0, 18, 1152, 18816, 112896, 282240, 301056, 129024, 18432, 512.
The coefficients of the associated polynomials are in
A103371.
-
aRow := n -> seq(binomial(n-1, k-1)*binomial(n,k)*2^k, k=0..n):
seq(print(aRow(n)), n=0..9);
-
T[n_, k_] := Binomial[n-1, k-1] * Binomial[n, k] * 2^k;
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
-
from math import comb
def T(n, k):
return comb(n-1, k-1)*comb(n, k)*2**k if k > 0 else k**n
print([T(n, k) for n in range(10) for k in range(n+1)]) # Michael S. Branicky, May 30 2021
A361894
Triangle read by rows. T(n, k) is the number of Fibonacci meanders with a central angle of 360/m degrees that make m*k left turns and whose length is m*n, where m = 2.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 4, 6, 2, 1, 5, 16, 6, 2, 1, 6, 35, 20, 6, 2, 1, 7, 66, 65, 20, 6, 2, 1, 8, 112, 186, 70, 20, 6, 2, 1, 9, 176, 462, 246, 70, 20, 6, 2, 1, 10, 261, 1016, 812, 252, 70, 20, 6, 2, 1, 11, 370, 2025, 2416, 917, 252, 70, 20, 6, 2, 1, 12, 506, 3730, 6435, 3256, 924, 252, 70, 20, 6, 2, 1
Offset: 1
Triangle T(n, k) starts:
[ 1] 1;
[ 2] 2, 1;
[ 3] 3, 2, 1;
[ 4] 4, 6, 2, 1;
[ 5] 5, 16, 6, 2, 1;
[ 6] 6, 35, 20, 6, 2, 1;
[ 7] 7, 66, 65, 20, 6, 2, 1;
[ 8] 8, 112, 186, 70, 20, 6, 2, 1;
[ 9] 9, 176, 462, 246, 70, 20, 6, 2, 1;
[10] 10, 261, 1016, 812, 252, 70, 20, 6, 2, 1;
[11] 11, 370, 2025, 2416, 917, 252, 70, 20, 6, 2, 1;
[12] 12, 506, 3730, 6435, 3256, 924, 252, 70, 20, 6, 2, 1.
.
T(4, k) counts Fibonacci meanders with central angle 180 degrees and length 8 that make k left turns. Written as binary strings (L = 1, R = 0):
k = 1: 11000000, 10010000, 10000100, 10000001;
k = 2: 11110000, 11100100, 11100001, 11010010, 11001001, 10100101;
k = 3: 11111100, 11111001;
k = 4: 11111111.
Comments