cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A198062 Array read by antidiagonals, m>=0, n>=0, k>=0, A(m, n, k) = sum{j=0..m} sum{i=0..m} (-1)^(j+i)*C(i,j)*n^j*k^(m-j).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 4, 2, 1, 0, 1, 1, 8, 3, 2, 1, 0, 1, 1, 16, 4, 4, 3, 1, 0, 1, 1, 32, 5, 8, 9, 3, 1, 0, 1, 1, 64, 6, 16, 27, 7, 3, 1, 0, 1, 1, 128, 7, 32, 81, 15, 7, 3, 1, 0, 1, 1, 256, 8, 64, 243, 31, 15, 9, 4, 1, 0, 1, 1, 512, 9
Offset: 0

Views

Author

Peter Luschny, Nov 02 2011

Keywords

Examples

			   [0] [1] [2]  [3] [4]  [5]  [6]  [7]  [8]  [9]
-------------------------------------------------
[0]  1   1   1    1   1    1    1    1    1    1    A000012
[1]  0   1   1    2   2    2    3    3    3    3    A003056
[2]  0   1   1    4   3    4    9    7    7    9    A073254
[3]  0   1   1    8   4    8   27   15   15   27    A198063
[4]  0   1   1   16   5   16   81   31   31   81    A198064
[5]  0   1   1   32   6   32  243   63   63  243    A198065
		

Crossrefs

Programs

  • Maple
    A198062_RowAsTriangle := proc(m) local pow; pow :=(a,b)->`if`(a=0 and b=0,1,a^b): proc(n, k) local i, j; add(add((-1)^(j + i)*binomial(i, j)*pow(n, j)* pow(k, m-j), i=0..m),j=0..m) end: end:
    for m from 0 to 2 do seq(print(seq(A198062_RowAsTriangle(m)(n,k),k=0..n)),n=0..5) od;
  • Mathematica
    max = 9; RowAsTriangle[m_][n_, k_] := Module[{pow}, pow[a_, b_] := If[a == 0 && b == 0, 1, a^b]; Module[{i, j}, Sum[Sum[(-1)^(j+i)*Binomial[i, j]*pow[n, j]*pow[k, m-j], {i, 0, m}], {j, 0, m}]]]; t = Flatten /@ Table[RowAsTriangle[m][n, k], {m, 0, max}, {n, 0, max}, {k, 0, n}]; Table[t[[n-k+1, k+1]], {n, 0, max}, {k, 0, n }] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)

Formula

A007318(n,k) = A(0,n+1,k+1)*C(n,k)^1/(k+1)^0,
A103371(n,k) = A(1,n+1,k+1)*C(n,k)^2/(k+1)^1,
A194595(n,k) = A(2,n+1,k+1)*C(n,k)^3/(k+1)^2,
A197653(n,k) = A(3,n+1,k+1)*C(n,k)^4/(k+1)^3,
A197654(n,k) = A(4,n+1,k+1)*C(n,k)^5/(k+1)^4,
A197655(n,k) = A(5,n+1,k+1)*C(n,k)^6/(k+1)^5.

A335340 North-East paths from (0,0) to (n,n) with k cyclic descents.

Original entry on oeis.org

2, 4, 2, 6, 12, 2, 8, 36, 24, 2, 10, 80, 120, 40, 2, 12, 150, 400, 300, 60, 2, 14, 252, 1050, 1400, 630, 84, 2, 16, 392, 2352, 4900, 3920, 1176, 112, 2, 18, 576, 4704, 14112, 17640, 9408, 2016, 144, 2, 20, 810, 8640, 35280, 63504, 52920, 20160, 3240, 180, 2
Offset: 1

Views

Author

Per W. Alexandersson, Jun 02 2020

Keywords

Comments

A North-East path is a path from (0,0) to (n,n) using steps (1,0) and (0,1). A cyclic descent is a North step followed by an East step, where the last and first step is a cyclic descent if the path ends with a North step and starts with an East step.
The sum of the entries in row n is equal to binomial(2n,n).
I conjecture that the polynomial Sum_{k=1...n} T(n,k) t^k is real-rooted for all n.

Examples

			The table starts as
2,
4, 2
6, 12, 2
8, 36, 24, 2
10, 80, 120, 40, 2
12, 150, 400, 300, 60, 2
		

Crossrefs

Cf. A103371.

Programs

  • Mathematica
    T[n_, k_] = 2 Binomial[n, k] Binomial[n - 1, k - 1];

Formula

T(n,k) = 2*binomial(n,k)*binomial(n-1,k-1).
T(n,k) = 2 * A103371(n-1,k-1). - Alois P. Heinz, Jun 02 2020

A344563 T(n, k) = binomial(n - 1, k - 1) * binomial(n, k) * 2^k, T(0, 0) = 1. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 4, 4, 0, 6, 24, 8, 0, 8, 72, 96, 16, 0, 10, 160, 480, 320, 32, 0, 12, 300, 1600, 2400, 960, 64, 0, 14, 504, 4200, 11200, 10080, 2688, 128, 0, 16, 784, 9408, 39200, 62720, 37632, 7168, 256, 0, 18, 1152, 18816, 112896, 282240, 301056, 129024, 18432, 512
Offset: 0

Views

Author

Peter Luschny, May 30 2021

Keywords

Examples

			[0] 1;
[1] 0,  2;
[2] 0,  4,    4;
[3] 0,  6,   24,     8;
[4] 0,  8,   72,    96,     16;
[5] 0, 10,  160,   480,    320,     32;
[6] 0, 12,  300,  1600,   2400,    960,     64;
[7] 0, 14,  504,  4200,  11200,  10080,   2688,    128;
[8] 0, 16,  784,  9408,  39200,  62720,  37632,   7168,   256;
[9] 0, 18, 1152, 18816, 112896, 282240, 301056, 129024, 18432, 512.
		

Crossrefs

Row sums are A002003 with a(0) = 1, cf. also A047781.
The coefficients of the associated polynomials are in A103371.

Programs

  • Maple
    aRow := n -> seq(binomial(n-1, k-1)*binomial(n,k)*2^k, k=0..n):
    seq(print(aRow(n)), n=0..9);
  • Mathematica
    T[n_, k_] := Binomial[n-1, k-1] * Binomial[n, k] * 2^k;
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
  • Python
    from math import comb
    def T(n, k):
        return comb(n-1, k-1)*comb(n, k)*2**k if k > 0 else k**n
    print([T(n, k) for n in range(10) for k in range(n+1)]) # Michael S. Branicky, May 30 2021

A361894 Triangle read by rows. T(n, k) is the number of Fibonacci meanders with a central angle of 360/m degrees that make m*k left turns and whose length is m*n, where m = 2.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 6, 2, 1, 5, 16, 6, 2, 1, 6, 35, 20, 6, 2, 1, 7, 66, 65, 20, 6, 2, 1, 8, 112, 186, 70, 20, 6, 2, 1, 9, 176, 462, 246, 70, 20, 6, 2, 1, 10, 261, 1016, 812, 252, 70, 20, 6, 2, 1, 11, 370, 2025, 2416, 917, 252, 70, 20, 6, 2, 1, 12, 506, 3730, 6435, 3256, 924, 252, 70, 20, 6, 2, 1
Offset: 1

Views

Author

Peter Luschny, Mar 31 2023

Keywords

Comments

For an overview of the terms used see A361574. A201631 gives the row sums of this triangle.
The corresponding sequence counting meanders without the requirement of being Fibonacci is A103371 (for which in turn A103327 is a termwise majorant counting permutations of the same type).
The diagonals, starting from the main diagonal, apparently converge to A000984.

Examples

			Triangle T(n, k) starts:
  [ 1]  1;
  [ 2]  2,   1;
  [ 3]  3,   2,    1;
  [ 4]  4,   6,    2,    1;
  [ 5]  5,  16,    6,    2,    1;
  [ 6]  6,  35,   20,    6,    2,   1;
  [ 7]  7,  66,   65,   20,    6,   2,   1;
  [ 8]  8, 112,  186,   70,   20,   6,   2,  1;
  [ 9]  9, 176,  462,  246,   70,  20,   6,  2,  1;
  [10] 10, 261, 1016,  812,  252,  70,  20,  6,  2, 1;
  [11] 11, 370, 2025, 2416,  917, 252,  70, 20,  6, 2, 1;
  [12] 12, 506, 3730, 6435, 3256, 924, 252, 70, 20, 6, 2, 1.
.
T(4, k) counts Fibonacci meanders with central angle 180 degrees and length 8 that make k left turns. Written as binary strings (L = 1, R = 0):
k = 1: 11000000, 10010000, 10000100, 10000001;
k = 2: 11110000, 11100100, 11100001, 11010010, 11001001, 10100101;
k = 3: 11111100, 11111001;
k = 4: 11111111.
		

Crossrefs

Cf. A201631 (row sums), A361681 (m=3), A132812, A361574, A103371, A000984.

Programs

  • SageMath
    # using function 'FibonacciMeandersByLeftTurns' from A361681.
    for n in range(1, 12):
        print(FibonacciMeandersByLeftTurns(2, n))
Previous Showing 21-24 of 24 results.