cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A157074 Number of integer sequences of length n+1 with sum zero and sum of absolute values 50.

Original entry on oeis.org

2, 150, 6252, 182500, 4112502, 75578370, 1173777752, 15795816120, 187652162502, 1996568642530, 19245807386652, 169668375420180, 1378768046330402, 10396793993805030, 73166155146412752, 482928212647720720, 3002693915693248002, 17655197338344400470
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,25); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 27 2022: (Start)
a(n) = (n+1)*binomial(n+24, 25)*Hypergeometric3F2([-24, -n, 1-n], [2, -n-24], 1).
a(n) = (126410606437752/50!)*n*(n+1)*(9623905480333281923493425053824177930240000000000 + 27100515339271296805042905104567762524569600000000*n + 49226599934719560481828455826236675352166400000000*n^2 + 51923175705445481350794593882064923048017920000000*n^3 + 46502829595021715716879102923565907828539392000000*n^4 + 28607394119885617552139740430561122618473185280000*n^5 + 16559588497213417883781098164439679738807582720000*n^6 + 6903192311627666498917104674104501458397298688000*n^7 + 2894036204442771597885580471785456670461945446400*n^8 + 882529358789488763775646630321568918645729918976*n^9 + 285704714285545970609012303782721701384304001024*n^10 + 66744193695557588078616189319402098781536485376*n^11 + 17394219679949413313652735722550417627568410624*n^12 + 3209212575849629078911083109861120504852463616*n^13 + 693340015644326307061765976396831207893776384*n^14 + 103183723405307213352941409893689330849622016*n^15 + 18890270959451165193941203482138711306505984*n^16 + 2301923694341735297363581288294981193895936*n^17 + 363246399568340082151669298560235347864064*n^18 + 36632957463825141955678003229613126558336*n^19 + 5051271387716061681982819535517710183664*n^20 + 424699960734096109443243714664325553216*n^21 + 51748891662219811557282274201341501784*n^22 + 3644289612230496197746802122023398616*n^23 + 396093870596357042648294916274601009*n^24 + 23416970176809393473086005534732576*n^25 + 2288479608700865971390942858179924*n^26 + 113584302206510356395975946196976*n^27 + 10049618631034902174836327665474*n^28 + 417815336521106587249172637024*n^29 + 33668912037122043295220280476*n^30 + 1166960621063436872100315624*n^31 + 86099204270791153803452751*n^32 + 2468552637980851499947584*n^33 + 167536461123588897837416*n^34 + 3927535896285273089184*n^35 + 246218365513296690316*n^36 + 4640273089678232064*n^37 + 269714108783157936*n^38 + 3986042964314664*n^39 + 215542329647711*n^40 + 2405227111584*n^41 + 121370670916*n^42 + 961331184*n^43 + 45396066*n^44 + 227424*n^45 + 10076*n^46 + 24*n^47 + n^48).
G.f.: 2*x*(1 + 24*x + 576*x^2 + 6624*x^3 + 76176*x^4 + 558624*x^5 + 4096576*x^6 + 21507024*x^7 + 112911876*x^8 + 451647504*x^9 + 1806590016*x^10 + 5720868384*x^11 + 18116083216*x^12 + 46584213984*x^13 + 119787978816*x^14 + 254549454984*x^15 + 540917591841*x^16 + 961631274384*x^17 + 1709566710016*x^18 + 2564350065024*x^19 + 3846525097536*x^20 + 4895577396864*x^21 + 6230734868736*x^22 + 6749962774464*x^23 + 7312459672336*x^24 + 6749962774464*x^25 + 6230734868736*x^26 + 4895577396864*x^27 + 3846525097536*x^28 + 2564350065024*x^29 + 1709566710016*x^30 + 961631274384*x^31 + 540917591841*x^32 + 254549454984*x^33 + 119787978816*x^34 + 46584213984*x^35 + 18116083216*x^36 + 5720868384*x^37 + 1806590016*x^38 + 451647504*x^39 + 112911876*x^40 + 21507024*x^41 + 4096576*x^42 + 558624*x^43 + 76176*x^44 + 6624*x^45 + 576*x^46 + 24*x^47 + x^48)/(1-x)^51. (End)

A103883 Square array A(n,k) read by antidiagonals: coordination sequence for lattice B_n.

Original entry on oeis.org

1, 1, 8, 1, 18, 16, 1, 32, 74, 24, 1, 50, 224, 170, 32, 1, 72, 530, 768, 306, 40, 1, 98, 1072, 2562, 1856, 482, 48, 1, 128, 1946, 6968, 8130, 3680, 698, 56, 1, 162, 3264, 16394, 28320, 20082, 6432, 954, 64, 1, 200, 5154, 34624, 83442, 85992, 42130, 10304, 1250, 72
Offset: 2

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Examples

			Array, A(n, k), begins:
  1,   8,    16,     24,      32,       40,        48, ... A022144;
  1,  18,    74,    170,     306,      482,       698, ... A022145;
  1,  32,   224,    768,    1856,     3680,      6432, ... A022146;
  1,  50,   530,   2562,    8130,    20082,     42130, ... A022147;
  1,  72,  1072,   6968,   28320,    85992,    214864, ... A022148;
  1,  98,  1946,  16394,   83442,   307314,    907018, ... A022149;
  1, 128,  3264,  34624,  216448,   954880,   3301952, ... A022150;
  1, 162,  5154,  67266,  507906,  2653346,  10666146, ... A022151;
  1, 200,  7760, 122264, 1099040,  6728168,  31208560, ... A022152;
  1, 242, 11242, 210474, 2224178, 15804866,  83999962, ... A022153;
  1, 288, 15776, 346304, 4254912, 34792672, 210482016, ... A022154;
  ...
Antidiagonals, T(n, k), begin as:
  1;
  1,   8;
  1,  18,   16;
  1,  32,   74,    24;
  1,  50,  224,   170,    32;
  1,  72,  530,   768,   306,    40;
  1,  98, 1072,  2562,  1856,   482,   48;
  1, 128, 1946,  6968,  8130,  3680,  698,  56;
  1, 162, 3264, 16394, 28320, 20082, 6432, 954, 64;
		

Crossrefs

Programs

  • Magma
    A103883:= func< n,k | (&+[Binomial(n-j-1,n-k-1)*(Binomial(2*n-2*k+1,2*j) - 2*j*Binomial(n-k,j)) : j in [0..k]]) >;
    [A103883(n,k): k in [0..n-2], n in [2..14]]; // G. C. Greubel, May 24 2023
    
  • Mathematica
    offset = 2;
    T[n_, k_] := SeriesCoefficient[Sum[(Binomial[2n + 1, 2i] - 2i Binomial[n, i]) x^i, {i, 0, n}]/(1 - x)^n, {x, 0, k}];
    Table[T[n - k, k], {n, offset, 11}, {k, 0, n - offset}] // Flatten (* Jean-François Alcover, Feb 13 2019 *)
  • SageMath
    def A103883(n,k): return sum(binomial(n-j-1,n-k-1)*(binomial(2*n-2*k+1,2*j) - 2*j*binomial(n-k,j)) for j in range(k+1))
    flatten([[A103883(n,k) for k in range(n-1)] for n in range(2,15)]) # G. C. Greubel, May 24 2023

Formula

G.f. of n-th row: (Sum_{i=0..n} (C(2n+1, 2*i) - 2*i*C(n, i))*x^i)/(1-x)^n.
From G. C. Greubel, May 24 2023: (Start)
A(n, k) = Sum_{j=0..k} binomial(n+k-j-1, n-1)*(binomial(2*n+1, 2*j) - 2*j*binomial(n, j)) (array).
T(n, k) = Sum_{j=0..k} binomial(n-j-1, n-k-1)*(binomial(2*n-2*k+1, 2*j) - 2*j*binomial(n-k, j)) (antidiagonals). (End)

A157053 Number of integer sequences of length n+1 with sum zero and sum of absolute values 8.

Original entry on oeis.org

2, 24, 162, 780, 2970, 9492, 26474, 66222, 151560, 322190, 643632, 1219374, 2206932, 3838590, 6447660, 10501172, 16639974, 25727292, 38906870, 57671880, 83945862, 120177024, 169447302, 235597650, 323371100, 438575202, 588265524, 780951962, 1026829680
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*(n+1)*(n^2+n+6)*(n^4 +2*n^3 +23*n^2 +22*n +24)/576, {n,50}] (* G. C. Greubel, Jan 23 2022 *)
  • Sage
    [n*(n+1)*(n^2+n+6)*(n^4 +2*n^3 +23*n^2 +22*n +24)/576 for n in (1..50)] # G. C. Greubel, Jan 23 2022

Formula

a(n) = T(n,4); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1+3*x+9*x^2+9*x^3+9*x^4+3*x^5+x^6)/(1-x)^9. - Colin Barker, Mar 17 2012
a(n) = n*(n+1)*(n^2+n+6)*(n^4 +2*n^3 +23*n^2 +22*n +24)/576. - Bruno Berselli, Mar 17 2012
E.g.f.: (x/576)*(1152 +5760*x +9216*x^2 +6432*x^3 +2208*x^4 +384*x^5 +32*x^6 +x^7)*exp(x). - G. C. Greubel, Jan 23 2022

A157054 Number of integer sequences of length n+1 with sum zero and sum of absolute values 10.

Original entry on oeis.org

2, 30, 252, 1500, 7002, 27174, 91112, 271224, 731502, 1815506, 4197468, 9129276, 18827718, 37060506, 70006512, 127485584, 224676522, 384468534, 640622012, 1041949020, 1657762722, 2584888350, 3956576472, 5953712520, 8818775030, 12873059082, 18537751260
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*(n+1)*(n^8 +4*n^7 +66*n^6 +184*n^5 +1089*n^4 +1876*n^3 +4604*n^2 +3696*n +2880)/14400, {n,50}] (* G. C. Greubel, Jan 23 2022 *)
  • Sage
    [n*(n+1)*(n^8 +4*n^7 +66*n^6 +184*n^5 +1089*n^4 +1876*n^3 +4604*n^2 +3696*n +2880)/14400 for n in (1..50)] # G. C. Greubel, Jan 23 2022

Formula

a(n) = T(n,5); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1+4*x+16*x^2+24*x^3+36*x^4+24*x^5+16*x^6+4*x^7+x^8)/(1-x)^11. - Colin Barker, Mar 17 2012
From G. C. Greubel, Jan 23 2022: (Start)
a(n) = n*(n+1)*(n^8 +4*n^7 +66*n^6 +184*n^5 +1089*n^4 +1876*n^3 +4604*n^2 +3696*n +2880)/14400.
E.g.f.: (x/14400)*(28800 +187200*x +403200*x^2 +398400*x^3 +207840*x^4 +61200*x^5 +10400*x^6 +1000*x^7 +50*x^8 +x^9)*exp(x). (End)

A157055 Number of integer sequences of length n+1 with sum zero and sum of absolute values 12.

Original entry on oeis.org

2, 36, 362, 2570, 14240, 65226, 256508, 889716, 2777370, 7925720, 20934474, 51697802, 120353324, 265953170, 561075720, 1135620536, 2214405618, 4175000796, 7634582090, 13577591370, 23539760552, 39868752506, 66087441092, 107392877100, 171332460650, 268708978512
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Column k=6 of A103881.
Cf. A156554.

Programs

  • Mathematica
    Table[n*(n+1)*(n^10 +5*n^9 +120*n^8 +450*n^7 +4173*n^6 +10965*n^5 +48530*n^4 +79300*n^3 +163176*n^2 +125280*n +86400)/518400, {n, 50}] (* G. C. Greubel, Jan 24 2022 *)
  • Sage
    [n*(n+1)*(n^10 +5*n^9 +120*n^8 +450*n^7 +4173*n^6 +10965*n^5 +48530*n^4 +79300*n^3 +163176*n^2 +125280*n +86400)/518400 for n in (1..50)] # G. C. Greubel, Jan 24 2022

Formula

a(n) = T(n,6) where T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1 +5*x +25*x^2 +50*x^3 +100*x^4 +100*x^5 +100*x^6 +50*x^7 +25*x^8 +5*x^9 +x^10)/(1-x)^13. - Colin Barker, Jan 25 2013
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = n*(n+1)*(n^10 +5*n^9 +120*n^8 +450*n^7 +4173*n^6 +10965*n^5 +48530*n^4 +79300*n^3 +163176*n^2 +125280*n +86400)/518400.
E.g.f.: (x/518400)*(1036800 +8294400*x +22464000*x^2 +28728000*x^3 +20131200*x^4 +8369280*x^5 +2154240*x^6 +349200*x^7 +35400*x^8 +2160*x^9 +72*x^10 +x^11)*exp(x). (End)

A157056 Number of integer sequences of length n+1 with sum zero and sum of absolute values 14.

Original entry on oeis.org

2, 42, 492, 4060, 26070, 137886, 623576, 2476296, 8809110, 28512110, 85014204, 235895244, 614266354, 1511679210, 3536846160, 7907476016, 16967926746, 35078339106, 70098276620, 135798494460, 255689552382, 468969729382, 839584669992, 1469778991800, 2520031983950
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*(n+1)*(n^12 +6*n^11 +197*n^10 +930*n^9 +12363*n^8 +43938*n^7 +300551*n^6 +751710*n^5 +2756536*n^4 +4309656*n^3 +7816752*n^2 +5780160*n +3628800)/25401600, {n,50}] (* G. C. Greubel, Jan 24 2022 *)
  • Sage
    [n*(n+1)*(n^12 +6*n^11 +197*n^10 +930*n^9 +12363*n^8 +43938*n^7 +300551*n^6 +751710*n^5 +2756536*n^4 +4309656*n^3 +7816752*n^2 +5780160*n +3628800)/25401600 for n in (1..50)] # G. C. Greubel, Jan 24 2022

Formula

a(n) = T(n,7); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1 +6*x +36*x^2 +90*x^3 +225*x^4 +300*x^5 +400*x^6 +300*x^7 +225*x^8 +90*x^9 +36*x^10 +6*x^11 +x^12)/(1-x)^15. - Colin Barker, Jan 25 2013
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = n*(n+1)*(n^12 +6*n^11 +197*n^10 +930*n^9 +12363*n^8 +43938*n^7 +300551*n^6 +751710*n^5 +2756536*n^4 +4309656*n^3 +7816752*n^2 +5780160*n +3628800)/25401600.
E.g.f.: (x/25401600)*(50803200 +482630400*x +1574899200*x^2 +2472422400*x^3 +2176070400*x^4 +1169320320*x^5 +403683840*x^6 +92221920*x^7 +14129640*x^8 +1449420*x^9 +97608*x^10 +4116*x^11 +98*x^12 +x^13)*exp(x). (End)

A157057 Number of integer sequences of length n+1 with sum zero and sum of absolute values 16.

Original entry on oeis.org

2, 48, 642, 6040, 44130, 264936, 1356194, 6077196, 24314490, 88206140, 293744154, 907129236, 2619716554, 7125357540, 18363363690, 45076309166, 105864434424, 238815143406, 519252051080, 1091481669390, 2224042468032, 4403475647758, 8489857618992, 15969368635950
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(12870/16!)*n*(n+1)*(203212800 +349090560*n +487608192*n^2 +296058000*n^3 +196660016*n^4 +61391512*n^5 +25601072*n^6 +4564385*n^7 + 1344383*n^8 + 138621*n^9 +30835*n^10 +1715*n^11 +301*n^12 +7*n^13 +n^14), {n, 50}] (* G. C. Greubel, Jan 24 2022 *)
  • Sage
    [(12870/factorial(16))*n*(n+1)*(203212800 +349090560*n +487608192*n^2 +296058000*n^3 +196660016*n^4 +61391512*n^5 +25601072*n^6 +4564385*n^7 + 1344383*n^8 + 138621*n^9 +30835*n^10 +1715*n^11 +301*n^12 +7*n^13 +n^14) for n in (1..50)] # G. C. Greubel, Jan 24 2022

Formula

a(n) = T(n,8); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1 + 7*x + 49*x^2 + 147*x^3 + 441*x^4 + 735*x^5 + 1225*x^6 + 1225*x^7 + 1225*x^8 + 735*x^9 + 441*x^10 + 147*x^11 + 49*x^12 + 7*x^13 + x^14)/(1-x)^17. - Colin Barker, Jan 25 2013
a(n) = (12870/16!)*n*(n+1)*(203212800 + 349090560*n + 487608192*n^2 + 296058000*n^3 + 196660016*n^4 + 61391512*n^5 + 25601072*n^6 + 4564385*n^7 + 1344383*n^8 + 138621*n^9 + 30835*n^10 + 1715*n^11 + 301*n^12 + 7*n^13 + n^14). - G. C. Greubel, Jan 24 2022

A157058 Number of integer sequences of length n+1 with sum zero and sum of absolute values 18.

Original entry on oeis.org

2, 54, 812, 8580, 70310, 472626, 2703512, 13507416, 60110030, 241925530, 891454124, 3037849828, 9654482474, 28818500830, 81289041680, 217815522736, 556959705302, 1364497268946, 3214138597460, 7302195414780, 16045139112002, 34183012888134, 70764981877592
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(48620/18!)*n*(n+1)*(14631321600 +26760222720*n +38452817664*n^2 +25217041536*n^3 +17311651344*n^4 +5993468992*n^5 +2592460808*n^6 +533444296*n^7 +163476113*n^8 +20735776*n^9 +4812092*n^10 +370160*n^11 +67942*n^12 +2912*n^13 +436*n^14 +8*n^15 +n^16), {n,50}] (* G. C. Greubel, Jan 24 2022 *)
  • Sage
    [(48620/factorial(18))*n*(n+1)*(14631321600 +26760222720*n +38452817664*n^2 +25217041536*n^3 +17311651344*n^4 +5993468992*n^5 +2592460808*n^6 +533444296*n^7 +163476113*n^8 +20735776*n^9 +4812092*n^10 +370160*n^11 +67942*n^12 +2912*n^13 +436*n^14 +8*n^15 +n^16) for n in (1..50)] # G. C. Greubel, Jan 24 2022

Formula

a(n) = T(n,9); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1 +8*x +64*x^2 +224*x^3 +784*x^4 +1568*x^5 +3136*x^6 +3920*x^7 +4900*x^8 +3920*x^9 +3136*x^10 +1568*x^11 +784*x^12 +224*x^13 +64*x^14 +8*x^15 +x^16)/(1-x)^19. - Colin Barker, Jan 25 2013
a(n) = (48620/18!)*n*(n+1)*(14631321600 +26760222720*n +38452817664*n^2 +25217041536*n^3 +17311651344*n^4 +5993468992*n^5 +2592460808*n^6 +533444296*n^7 +163476113*n^8 +20735776*n^9 +4812092*n^10 +370160*n^11 +67942*n^12 +2912*n^13 +436*n^14 +8*n^15 +n^16). - G. C. Greubel, Jan 24 2022

A157059 Number of integer sequences of length n+1 with sum zero and sum of absolute values 20.

Original entry on oeis.org

2, 60, 1002, 11750, 106752, 794598, 5025692, 27717948, 135916002, 601585512, 2432878866, 9079799742, 31534801116, 102644594262, 315029394792, 916470530808, 2538818182782, 6724224543708, 17088309885542, 41800229045610, 98698280879352, 225524301678170
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,10); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
G.f.: 2*x*(x^18 +9*x^17 +81*x^16 +324*x^15 +1296*x^14 +3024*x^13 +7056*x^12 +10584*x^11 +15876*x^10 +15876*x^9 +15876*x^8 +10584*x^7 +7056*x^6 +3024*x^5 +1296*x^4 +324*x^3 +81*x^2 +9*x +1)/(1-x)^21. - Colin Barker, Jan 25 2013
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = (184756/20!)*n*(n+1)*(1316818944000 +2540101939200*n +3742987138560*n^2 +2615609097216*n^3 +1848671853984*n^4 +695217071376*n^5 +310567813984*n^6 +71342133912*n^7 +22639753938*n^8 +3337504857*n^9 +803922153*n^10 +76623228*n^11 +14628472*n^12 +873558*n^13 +136302*n^14 +4644*n^15 +606*n^16 +9*n^17 +n^18).
a(n) = (n+1)*binomial(n+9, 10)*Hypergeometric3F2([-9, -n, 1-n], [2, -n-9], 1). (End)

A157060 Number of integer sequences of length n+1 with sum zero and sum of absolute values 22.

Original entry on oeis.org

2, 66, 1212, 15620, 155850, 1272810, 8823080, 53265960, 285510150, 1379301990, 6078578508, 24680519604, 93093230958, 328512273390, 1091144804400, 3429182092560, 10244035242630, 29206656395910, 79759293448100
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,11); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = (n+1)*binomial(n+10, 11)*Hypergeometric3F2([-10, -n, 1-n], [2, -n-10], 1).
a(n) = (705432/22!)*n*(n+1)*(144850083840000 +292579402752000*n +440986525516800*n^2 +325146872079360*n^3 +235868591146176*n^4 +94960596391200*n^5 +43658519177360*n^6 +10953312870160*n^7 +3585704220196*n^8 +593523073650*n^9 +147783744195*n^10 +16467776610*n^11 +3255909581*n^12 +242376100*n^13 +39230830*n^14 +1873860*n^15 +254046*n^16 +7050*n^17 +815*n^18 +10*n^19 +n^20).
G.f.: 2*x*(1 +10*x +100*x^2 +450*x^3 +2025*x^4 +5400*x^5 +14400*x^6 +25200*x^7 +44100*x^8 +52920*x^9 +63504*x^10 +52920*x^11 +44100*x^12 +25200*x^13 +14400*x^14 +5400*x^15 +2025*x^16 +450*x^17 +100*x^18 +10*x^19 +x^20)/(1-x)^23. (End)
Previous Showing 11-20 of 33 results. Next