cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 149 results. Next

A189026 There appear to be at least n primes in the range (x-sqrt(x), x] for all x >= a(n).

Original entry on oeis.org

127, 1367, 2531, 2539, 6007, 7457, 10061, 10847, 23531, 35797, 35801, 38557, 44497, 47111, 69767, 69809, 88321, 107687, 110419, 110431, 113723, 127217, 250673, 250681, 250687, 250703, 268487, 268493, 286381, 286393, 302563, 302567, 360947, 369821, 405199
Offset: 1

Views

Author

T. D. Noe, Apr 15 2011

Keywords

Comments

These terms exist only if a strong form of Oppermann's conjecture that for any k>1 there is a prime between k^2-k and k^2 is true. Note that every term is prime. Sequence A189024 gives the number of primes in the range (x-sqrt(x), x]. The index of the prime a(n), that is, primepi(a(n)), is approximately (2.4*n)^2. These primes are generated in a manner similar to the Ramanujan primes (A104272).

Crossrefs

A189027 There appear to be at least n primes in the range (x-2*sqrt(x), x] for all x >= a(n).

Original entry on oeis.org

2, 3, 37, 139, 331, 1409, 1423, 1427, 2239, 3163, 3181, 3511, 6547, 7433, 7457, 7487, 10061, 11777, 11779, 14401, 18899, 19081, 19373, 23537, 24763, 27617, 27673, 32027, 32051, 38113, 43573, 43579, 47269, 47279, 50839, 61463, 88643, 88651, 88657, 88729
Offset: 1

Views

Author

T. D. Noe, Apr 15 2011

Keywords

Comments

These terms exist only if a strong form of Legendre's conjecture that there is a prime between consecutive squares is true. Note that every term is prime. Sequence A189025 gives the number of primes in the range (x-2*sqrt(x), x]. The index of prime a(n), that is, primepi(a(n)), is approximately (5n)^2. These primes are generated in a manner similar to the Ramanujan primes (A104272).

Crossrefs

A190502 Number of Ramanujan primes <= 2^n.

Original entry on oeis.org

0, 1, 1, 1, 2, 4, 7, 13, 23, 42, 75, 137, 255, 463, 872, 1612, 3030, 5706, 10749, 20387, 38635, 73584, 140336, 268216, 513705, 985818, 1894120, 3645744, 7027290, 13561906, 26207278, 50697533, 98182656, 190335585, 369323301, 717267167, 1394192236, 2712103833
Offset: 0

Views

Author

John W. Nicholson, May 11 2011

Keywords

Crossrefs

Programs

  • PARI
    \\ With RR[.] is a list of A104272(.). The output of this program is n, a(n), and RR[a(n)].
    j=0; while(2^jJohn W. Nicholson, Dec 01 2012
    
  • Perl
    use ntheory ":all"; sub a190502 { scalar(@{ramanujan_primes(1 << shift)}) } say a190502($) for 0..20; # _Dana Jacobsen, Dec 19 2015
    
  • Perl
    use ntheory ":all"; my $t = 0; for my $e (1..32) { $t += scalar(@{ramanujan_primes(2**($e-1)+1,2**$e)}); say "$e $t" } # Dana Jacobsen, Dec 19 2015
    
  • Perl
    use ntheory ":all"; say ramanujan_prime_count(2**$) for 0..47; # _Dana Jacobsen, Jan 03 2016

Extensions

Extended by T. D. Noe, May 11 2011
Extended to n = 32 by John W. Nicholson, Dec 01 2012
a(33)-a(41) from Dana Jacobsen, Dec 19 2015

A191225 Number of Ramanujan primes R_k between triangular numbers T(n-1) < R_k <= T(n).

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 0, 2, 1, 1, 2, 1, 2, 0, 2, 3, 2, 1, 2, 2, 2, 1, 4, 2, 2, 1, 0, 4, 3, 5, 1, 3, 2, 1, 5, 1, 2, 3, 4, 4, 4, 2, 2, 2, 4, 2, 3, 4, 3, 5, 4, 3, 2, 5, 4, 2, 5, 1, 6, 1, 5, 5, 7, 2, 2, 1, 10, 6, 6, 2, 2, 5, 0, 3, 7, 5, 4, 6, 7, 4
Offset: 1

Views

Author

John W. Nicholson, May 27 2011

Keywords

Comments

The function eta(x), A191228, returns the greatest value of k of R_k <= x, and where R_k is the k-th Ramanujan prime (A104272).

Examples

			Write the numbers 1, 2, ... in a triangle with n terms in the n-th row; a(n) = number of Ramanujan primes in n-th row.
Triangle begins
1                 (0 Ramanujan primes, eta(1) = 0)
2  3              (1 Ramanujan primes, eta(3) - eta(1) = 1)
4  5  6           (0 Ramanujan primes, eta(6) - eta(3) = 0)
7  8  9  10       (0 Ramanujan primes, eta(10) - eta(6) = 0)
11 12 13 14 15    (1 Ramanujan primes, eta(15) - eta(10) = 1)
16 17 18 19 20 21 (1 Ramanujan primes, eta(21) - eta(15) = 1)
		

Crossrefs

Programs

  • Mathematica
    terms = 100; nn = terms^2; R = Table[0, {nn}]; s = 0;
    Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, R[[s+1]] = k], {k, Prime[3 nn]}];
    A104272 = R + 1;
    eta = Table[Boole[MemberQ[A104272, k]], {k, 1, nn}] // Accumulate;
    T[n_] := n(n+1)/2;
    a[1] = 0; a[n_] := eta[[T[n]]] - eta[[T[n-1]]];
    Array[a, terms] (* Jean-François Alcover, Nov 07 2018, using T. D. Noe's code for A104272 *)
  • Perl
    use ntheory ":all"; sub a191225 { my $n = shift; ramanujan_prime_count( (($n-1)*$n)/2+1, ($n*($n+1))/2 ); } say a191225($) for 1..10; # _Dana Jacobsen, Dec 30 2015

Formula

a(n) = eta(T(n))- eta(T(n-1)).

A193880 0.75-Ramanujan primes R_{0.75,n}: a(n) is the smallest number such that for all x >= a(n), we have pi(x) - pi(0.75x) >= n, where pi(x) is the number of primes <= x.

Original entry on oeis.org

11, 29, 59, 67, 101, 149, 157, 163, 191, 227, 269, 271, 307, 379, 383, 419, 431, 433, 443, 457, 563, 593, 601, 641, 643, 673, 701, 709, 733, 827, 829, 907, 937, 947, 971, 1019, 1033, 1039, 1051, 1087, 1187, 1193, 1217, 1277, 1427, 1429, 1433, 1481, 1483, 1487
Offset: 1

Views

Author

Nadine Amersi, Olivia Beckwith (obeckwith(AT)gmail.com), Steven J. Miller (Steven.J.Miller(AT)williams.edu), Ryan Ronan (ronan2(AT)cooper.edu), Jonathan Sondow, Aug 07 2011

Keywords

Comments

See comment to A193761. - Vladimir Shevelev, Aug 18 2011
See additional comments and links in A290394. - Jonathan Sondow, Aug 01 2017

Examples

			a(1) = A290394(3) = 11. - _Jonathan Sondow_, Aug 01 2017
		

Crossrefs

Cf. A104272 (Ramanujan primes), A193761 (0.25-Ramanujan primes), A164952, A290394 (first (1 + 1/n)-Ramanujan prime).

Formula

a(n) >= A104272(n).

A205301 Last occurrence of n partitions in A204814.

Original entry on oeis.org

1312, 1501, 2446, 2776, 4381, 3676, 4951, 6541, 5686, 7771, 8326, 7696, 8011, 10471, 9256, 9871, 11041, 11626, 15256, 12751, 15511, 15151, 14956, 19441, 16801, 20596, 20101, 22291, 17611, 17341, 18451, 21856, 19051, 21226, 23761, 20842, 24796, 22651, 22546
Offset: 0

Views

Author

John W. Nicholson, Jan 27 2012

Keywords

Comments

Conjectured lower bound to be increasing for increasing n.
Related to Goldbach's conjecture.

Examples

			1312 is the last observed 0 so for n=0, a(0)=1312.
		

Crossrefs

Extensions

a(10)-a(38) from Donovan Johnson, Jan 28 2012

A212541 Let p_n=prime(n), n>=1. Then a(n) is the maximal prime p which differs from p_n, for which the intervals (p/2,p_n/2), (p,p_n], if pp_n, contain the same number of primes, and a(n)=0, if no such prime p exists.

Original entry on oeis.org

0, 11, 11, 11, 7, 17, 13, 29, 29, 23, 41, 41, 37, 47, 43, 59, 53, 67, 61, 0, 97, 97, 97, 97, 89, 0, 107, 103, 127, 149, 109, 149, 149, 151, 137, 139, 167, 167, 163, 179, 173, 0, 227, 229, 229, 233, 229, 227, 223, 211, 199, 0, 0, 263, 263, 257, 0, 281, 281
Offset: 1

Views

Author

Keywords

Comments

a(n)A104272).
a(n)=0 if and only if p_n is a peculiar prime, i.e., simultaneously Ramanujan and Labos (A080359) prime (see sequence A164554).

Examples

			Let n=4, p_n=7. Since 7 is not Ramanujan prime, then a(4) = A104272(4-pi(3.5)) = A104272(2) = 11.
		

Crossrefs

Formula

If p_n is not a Ramanujan prime, then a(n) = A104272(n-pi(p_n/2)).

A214924 Number of primes <= A214756(n).

Original entry on oeis.org

1, 1, 1, 7, 20, 28, 96, 152, 185, 212, 1179, 1829, 2217, 3382, 14350, 30780, 31528, 40929, 103498, 104047, 149674, 325845, 1094396, 1319933, 2850163, 6957867, 10539421, 10655453
Offset: 1

Views

Author

John W. Nicholson, Jul 29 2012

Keywords

Comments

a(n) = pi(A214756(n)).

Examples

			A214756(5) = 71, so a(5) = primepi(A214756(5)) = primepi(71) = 20.
		

Crossrefs

Formula

a(n) = A000217(A214756(n))

Extensions

Extension to a(28) added by John W. Nicholson, Nov 11 2013

A214925 Number of primes <= A214757(n).

Original entry on oeis.org

5, 5, 5, 10, 25, 31, 104, 159, 190, 219, 1186, 1832, 2227, 3388, 14358, 30804, 31547, 40935, 103522, 104072, 149690, 325853, 1094426, 1319950, 2850175, 6957880, 10539433, 10655464
Offset: 1

Views

Author

John W. Nicholson, Aug 06 2012

Keywords

Examples

			A214757(4) = 29, so a(4) = primepi(A214757(4)) = primepi(29) = 10.
		

Crossrefs

Formula

a(n) = pi(A214757(n)) = A000217(A214757(n)).

Extensions

Extension to a(28) added by John W. Nicholson, Nov 11 2013

A214926 Difference A214925(n) - A214924(n), prime count between Ramanujan primes bounding maximal gap primes.

Original entry on oeis.org

4, 4, 4, 3, 5, 3, 8, 7, 5, 7, 7, 3, 10, 6, 8, 24, 19, 6, 24, 25, 16, 8, 30, 17, 12, 13, 12, 11
Offset: 1

Views

Author

John W. Nicholson, Aug 06 2012

Keywords

Comments

Conjecture: For every n > 0, a(n) > 1.
Let rho(m) = A179196(m), for any n, let m be an integer such that p_(rho(m)) <= p_n and p_(n+1) <= p_(rho(m+1)), then rho(m) <= n < n + 1 <= rho(m + 1), therefore A001223(n) = p_(n+1) - p_n <= p_rho(m+1) - p_rho(m) = A182873(m). For all rho(m) = A179196(m), A001223(rho(m)) < A165959(m). (Comment copied from A001223). John W. Nicholson, Nov 17 2013

Examples

			a(4) = pi(A214757(4)) - pi(A214756(4)) = 10 - 7 = 3
		

Crossrefs

Formula

a(n) = pi(A214757(n)) - pi(A214756(n)).
a(n) = rho(A214757(n)) - rho(A214756(n)).

Extensions

Extension to a(28) added by John W. Nicholson, Nov 11 2013
Previous Showing 91-100 of 149 results. Next