cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A198165 Primes from merging of 5 successive digits in decimal expansion of sqrt(2).

Original entry on oeis.org

56237, 37309, 78569, 67187, 48073, 76679, 66797, 97379, 79907, 50387, 34327, 64157, 15727, 91229, 70249, 73721, 12149, 70999, 35831, 65927, 55927, 55799, 11527, 55997, 59971, 86201, 20147, 28517, 88919, 30871, 14321, 45083, 50839, 62603, 51407, 87253, 72533
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 5 digits in length.

Crossrefs

Programs

  • Mathematica
    With[{len=5},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]], len,1],IntegerLength[#]==len&&PrimeQ[#]&]]

A198166 Primes from merging of 6 successive digits in decimal expansion of sqrt(2).

Original entry on oeis.org

135623, 569671, 480731, 850387, 157273, 384623, 585073, 970999, 927557, 275579, 950501, 686201, 450839, 514079, 989687, 872533, 583523, 750287, 759961, 961729, 983557, 752203, 531857, 857011, 570113, 374603, 340849, 868999, 997069, 970699, 900481, 277903
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 6 digits in length.

Crossrefs

Programs

  • Mathematica
    With[{len=6},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]], len,1],IntegerLength[#]==len&&PrimeQ[#]&]]

A104845 Primes from merging of 4 successive digits in decimal expansion of e.

Original entry on oeis.org

4523, 8747, 7757, 7247, 5749, 6967, 6277, 3547, 4759, 3821, 6427, 4663, 3919, 2003, 1741, 9043, 4357, 8627, 4349, 6323, 8807, 5101, 1019, 1901, 9011, 1879, 1499, 4993, 2447, 7741, 7411, 8537, 4243, 2437, 3907, 2069, 9551, 7027, 6133, 3313, 4583, 4493
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 4 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    With[{len=4},FromDigits/@Select[Partition[RealDigits[E,10,1000][[1]], len,1],PrimeQ[FromDigits[#]]&&IntegerLength[FromDigits[#]]==len&]] (* Harvey P. Dale, Oct 23 2011 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 21 2013

A104846 Primes from merging of 5 successive digits in decimal expansion of e.

Original entry on oeis.org

74713, 62497, 24977, 24709, 47093, 95957, 49669, 27427, 46639, 32003, 59921, 21817, 35729, 63073, 28627, 27943, 94349, 33829, 98807, 57383, 41879, 18793, 91499, 68477, 47741, 37423, 42437, 24371, 10753, 17027, 61331, 13313, 93287
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 5 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    With[{len=5},FromDigits/@Select[Partition[RealDigits[E,10,1000][[1]], len,1],PrimeQ[FromDigits[#]]&&IntegerLength[FromDigits[#]]==len&]] (* Harvey P. Dale, Oct 23 2011 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 20 2013

A104848 Primes from merging of 7 successive digits in decimal expansion of e.

Original entry on oeis.org

2718281, 6028747, 2497757, 5354759, 4759457, 7594571, 5945713, 7138217, 3059921, 9921817, 6059563, 6307381, 3073813, 9525101, 5251019, 4089149, 8914993, 9348841, 4167509, 7774499, 8606261, 2613313, 5830007, 1274437
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 7 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    With[{len=7},FromDigits/@Select[Partition[RealDigits[E,10,1000][[1]], len,1],PrimeQ[FromDigits[#]]&&IntegerLength[FromDigits[#]]==len&]] (* Harvey P. Dale, Oct 23 2011 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 19 2013

A104849 Primes from merging of 8 successive digits in decimal expansion of e.

Original entry on oeis.org

72407663, 40766303, 54759457, 57138217, 20030599, 98807531, 15738341, 83418793, 34884167, 84167509, 22648001, 10753907, 20695517, 38606261, 82656029, 29760673, 13200709, 27443747, 74704723, 69772093, 92836819
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 8 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    With[{len=8},FromDigits/@Select[Partition[RealDigits[E,10,1000][[1]], len,1],PrimeQ[FromDigits[#]]&&IntegerLength[FromDigits[#]]==len&]] (* Harvey P. Dale, Oct 23 2011 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 21 2013

A104851 Primes from merging of 10 successive digits in decimal expansion of e.

Original entry on oeis.org

7427466391, 7413596629, 6059563073, 3490763233, 2988075319, 1573834187, 7021540891, 5408914993, 6480016847, 9920695517, 1838606261, 6062613313, 3845830007, 1692836819, 4425056953, 2505695369, 5490598793, 1782154249, 8215424999, 9229576351, 9519366803
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Scan decimal expansion of e from left to right, recording any 10-digit primes seen. - N. J. A. Sloane, Feb 05 2012
All the primes listed here must have 10 digits, i.e., "leading zeros are not allowed". Otherwise, one would also have some terms as 297606737 or 865746377 or 98793127 from A104850. - M. F. Hasler, Nov 01 2014
The original version read (1185790117, 1180978417, 1573834187, 1838606261, 1308008771, 1692836819, 1782154249, 1825288693, 1525971943, 1730123819, 1332069811, 1881593041, 1934580727, 1978623209, 1164218399, 1574862173, 1635834619, 1311914371, ...). These terms are obtained when using signed 32-bit integers, i.e., take the 10-digit numbers modulo 2^32, and select the primes between 10^9 and 2^31. - M. F. Hasler, Nov 01 2014

Crossrefs

Programs

  • Mathematica
    With[{de=FromDigits/@Partition[RealDigits[E,10,10000][[1]],10,1]}, Select[de,#>10^9&&PrimeQ[#]&]] (* Harvey P. Dale, Feb 05 2012 *)
  • PARI
    list_A104851(x=exp(1), m=10)=m=10^m; for(k=1, default(realprecision), isprime(p=x\.1^k%m)&&p*10>m&&print1(p", ")) \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014

Extensions

Corrected by Harvey P. Dale, Feb 05 2012
Offset changed from 0 to 1 by Vincenzo Librandi, Apr 21 2013

A198167 Primes from merging of 7 successive digits in decimal expansion of sqrt(2).

Original entry on oeis.org

3562373, 5048801, 2420969, 5038753, 7534327, 6415727, 5073721, 2126441, 2644121, 9709993, 9935831, 2226659, 9275579, 8206057, 5714701, 7027453, 2851741, 8640889, 2145083, 5835239, 3868999, 8689997, 9970699, 9900481, 2779031, 6311159, 6668713, 6871301
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 7 digits in length.

Crossrefs

Programs

  • Mathematica
    With[{len=7},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]],len,1],IntegerLength[#]==len&&PrimeQ[#]&]]

A198168 Primes from merging of 8 successive digits in decimal expansion of sqrt(2).

Original entry on oeis.org

42135623, 98078569, 96718753, 76948073, 69480731, 31766797, 76679737, 24784621, 70388503, 64157273, 22970249, 35831413, 75055927, 82060571, 71470109, 55232923, 21450839, 25835239, 23950547, 57502877, 87759961, 18570113, 54374603, 16038689, 38689997, 99970699
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 8 digits in length.

Crossrefs

Programs

  • Mathematica
    With[{len=8},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]],len,1],IntegerLength[#]==len&&PrimeQ[#]&]]

A198170 Primes from merging of 3 successive digits in decimal expansion of Pi.

Original entry on oeis.org

653, 643, 433, 383, 419, 197, 971, 937, 751, 307, 421, 211, 821, 823, 647, 709, 223, 317, 359, 811, 701, 193, 521, 211, 229, 881, 109, 659, 593, 461, 823, 233, 337, 271, 821, 607, 491, 127, 587, 631, 881, 881, 829, 409, 643, 367, 113, 521, 941, 151, 433, 727
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 3 digits in length.

Crossrefs

Programs

  • Mathematica
    Select[FromDigits/@Partition[RealDigits[Pi,10,1000][[1]],3,1], IntegerLength[#]==3&&PrimeQ[#]&]
Previous Showing 11-20 of 38 results. Next