cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A105334 a(n) = n*(n+1)/2 mod 32.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 4, 13, 23, 2, 14, 27, 9, 24, 8, 25, 11, 30, 18, 7, 29, 20, 12, 5, 31, 26, 22, 19, 17, 16, 16, 17, 19, 22, 26, 31, 5, 12, 20, 29, 7, 18, 30, 11, 25, 8, 24, 9, 27, 14, 2, 23, 13, 4, 28, 21, 15, 10, 6, 3, 1, 0, 0, 1, 3, 6, 10, 15, 21, 28, 4, 13, 23, 2, 14, 27, 9, 24
Offset: 0

Views

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Periodic with period length 64. - Ray Chandler, Apr 18 2025

Crossrefs

Cf. A000217.
See A105198 for further information.

Programs

Formula

From Chai Wah Wu, Apr 17 2025: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7) - a(n-8) + a(n-9) - a(n-10) + a(n-11) - a(n-12) + a(n-13) - a(n-14) + a(n-15) - a(n-16) + a(n-17) - a(n-18) + a(n-19) - a(n-20) + a(n-21) - a(n-22) + a(n-23) - a(n-24) + a(n-25) - a(n-26) + a(n-27) - a(n-28) + a(n-29) - a(n-30) + a(n-31) - a(n-32) + a(n-33) - a(n-34) + a(n-35) - a(n-36) + a(n-37) - a(n-38) + a(n-39) - a(n-40) + a(n-41) - a(n-42) + a(n-43) - a(n-44) + a(n-45) - a(n-46) + a(n-47) - a(n-48) + a(n-49) - a(n-50) + a(n-51) - a(n-52) + a(n-53) - a(n-54) + a(n-55) - a(n-56) + a(n-57) - a(n-58) + a(n-59) - a(n-60) + a(n-61) - a(n-62) + a(n-63) for n > 62.
G.f.: x*(-x^60 - 2*x^59 - 4*x^58 - 6*x^57 - 9*x^56 - 12*x^55 - 16*x^54 + 12*x^53 - 25*x^52 + 2*x^51 - 4*x^50 - 10*x^49 - 17*x^48 + 8*x^47 - 32*x^46 + 24*x^45 - 49*x^44 + 38*x^43 - 68*x^42 + 50*x^41 - 57*x^40 + 28*x^39 - 48*x^38 + 36*x^37 - 41*x^36 + 10*x^35 - 36*x^34 + 14*x^33 - 33*x^32 + 16*x^31 - 32*x^30 + 16*x^29 - 33*x^28 + 14*x^27 - 36*x^26 + 10*x^25 - 41*x^24 + 36*x^23 - 48*x^22 + 28*x^21 - 57*x^20 + 50*x^19 - 68*x^18 + 38*x^17 - 49*x^16 + 24*x^15 - 32*x^14 + 8*x^13 - 17*x^12 - 10*x^11 - 4*x^10 + 2*x^9 - 25*x^8 + 12*x^7 - 16*x^6 - 12*x^5 - 9*x^4 - 6*x^3 - 4*x^2 - 2*x - 1)/((x - 1)*(x^2 + 1)*(x^4 + 1)*(x^8 + 1)*(x^16 + 1)*(x^32 + 1)). (End)

A105335 a(n) = n*(n+1)/2 mod 64.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44, 5, 31, 58, 22, 51, 17, 48, 16, 49, 19, 54, 26, 63, 37, 12, 52, 29, 7, 50, 30, 11, 57, 40, 24, 9, 59, 46, 34, 23, 13, 4, 60, 53, 47, 42, 38, 35, 33, 32, 32, 33, 35, 38, 42, 47, 53, 60, 4, 13
Offset: 0

Views

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Periodic with period length 128. - Ray Chandler, Apr 18 2025

Crossrefs

See A105198 for further information.
Cf. A018819.

Programs

  • Mathematica
    Mod[Accumulate[Range[0,80]],64] (* Harvey P. Dale, Jul 17 2020 *)

Formula

G.f. = p(x)/q(x) where p(x) has degree 124, and q(x) = (x-1)*(x^2+1)*(x^4+1)*(x^8+1)*(x^16+1)*(x^32+1)*(x^64+1), which has coefficients which are alternately +1 and -1 (when expanded). Compare the g.f. for binary partitions, A018819. - Harvey P. Dale and N. J. A. Sloane, Jul 17 2020

A105336 a(n) = n*(n+1)/2 mod 128.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 8, 25, 43, 62, 82, 103, 125, 20, 44, 69, 95, 122, 22, 51, 81, 112, 16, 49, 83, 118, 26, 63, 101, 12, 52, 93, 7, 50, 94, 11, 57, 104, 24, 73, 123, 46, 98, 23, 77, 4, 60, 117, 47, 106, 38, 99, 33, 96, 32, 97, 35, 102, 42
Offset: 0

Views

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Periodic with period length 256. - Ray Chandler, Apr 18 2025

Crossrefs

See A105198 for further information.

Programs

  • Mathematica
    Mod[Accumulate[Range[0,70]],128] (* Harvey P. Dale, Oct 16 2013 *)

A105337 a(n) = n*(n+1)/2 mod 256.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 20, 44, 69, 95, 122, 150, 179, 209, 240, 16, 49, 83, 118, 154, 191, 229, 12, 52, 93, 135, 178, 222, 11, 57, 104, 152, 201, 251, 46, 98, 151, 205, 4, 60, 117, 175, 234, 38, 99
Offset: 0

Views

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Periodic with period length 512. - Ray Chandler, Apr 18 2025

Crossrefs

See A105198 for further information.

Programs

  • Mathematica
    Mod[Accumulate[Range[0,70]],256] (* Harvey P. Dale, Nov 20 2020 *)

A105338 a(n) = n*(n+1)/2 mod 512.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 16, 49, 83, 118, 154, 191, 229, 268, 308, 349, 391, 434, 478, 11, 57, 104, 152, 201, 251, 302, 354, 407, 461, 4, 60, 117, 175, 234
Offset: 0

Views

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Periodic with period length 1024. - Ray Chandler, Apr 18 2025

Crossrefs

See A105198 for further information.

Programs

  • Mathematica
    Mod[#,512]&/@Accumulate[Range[0,60]] (* Harvey P. Dale, Dec 01 2018 *)

A105339 a(n) = n*(n+1)/2 mod 1024.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 11, 57, 104, 152, 201, 251, 302, 354, 407, 461, 516, 572, 629
Offset: 0

Views

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Periodic with period length 2048. - Ray Chandler, Apr 18 2025

Crossrefs

See A105198 for further information.

Programs

  • Mathematica
    Mod[Accumulate[Range[0,100]],1024] (* Harvey P. Dale, Jun 30 2017 *)
Previous Showing 11-16 of 16 results.