cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Oscar Takeshita

Oscar Takeshita's wiki page.

Oscar Takeshita has authored 10 sequences.

A105332 a(n) = n*(n+1)/2 mod 8.

Original entry on oeis.org

0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0, 0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0, 0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0, 0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0, 0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0, 0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0, 0, 1, 3, 6, 2, 7, 5, 4, 4
Offset: 0

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Periodic with period length 16. - Ray Chandler, Apr 18 2025

Crossrefs

Cf. A000217.
See A105198 for further information.

Programs

A105333 a(n) = n*(n+1)/2 mod 16.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 5, 12, 4, 13, 7, 2, 14, 11, 9, 8, 8, 9, 11, 14, 2, 7, 13, 4, 12, 5, 15, 10, 6, 3, 1, 0, 0, 1, 3, 6, 10, 15, 5, 12, 4, 13, 7, 2, 14, 11, 9, 8, 8, 9, 11, 14, 2, 7, 13, 4, 12, 5, 15, 10, 6, 3, 1, 0, 0, 1, 3, 6, 10, 15, 5, 12, 4, 13, 7, 2, 14, 11, 9, 8, 8, 9, 11, 14, 2, 7, 13, 4, 12
Offset: 0

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Triangular numbers mod 16. - Harvey P. Dale, Oct 12 2012
Periodic with period length 32. - Ray Chandler, Apr 18 2025

Crossrefs

Cf. A000217.
See A105198 for further information.

Programs

Formula

From Chai Wah Wu, Apr 17 2025: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7) - a(n-8) + a(n-9) - a(n-10) + a(n-11) - a(n-12) + a(n-13) - a(n-14) + a(n-15) - a(n-16) + a(n-17) - a(n-18) + a(n-19) - a(n-20) + a(n-21) - a(n-22) + a(n-23) - a(n-24) + a(n-25) - a(n-26) + a(n-27) - a(n-28) + a(n-29) - a(n-30) + a(n-31) for n > 30.
G.f.: x*(-x^28 - 2*x^27 - 4*x^26 - 6*x^25 - 9*x^24 + 4*x^23 - 16*x^22 + 12*x^21 - 25*x^20 + 18*x^19 - 20*x^18 + 6*x^17 - 17*x^16 + 8*x^15 - 16*x^14 + 8*x^13 - 17*x^12 + 6*x^11 - 20*x^10 + 18*x^9 - 25*x^8 + 12*x^7 - 16*x^6 + 4*x^5 - 9*x^4 - 6*x^3 - 4*x^2 - 2*x - 1)/((x - 1)*(x^2 + 1)*(x^4 + 1)*(x^8 + 1)*(x^16 + 1)). (End)

A105334 a(n) = n*(n+1)/2 mod 32.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 4, 13, 23, 2, 14, 27, 9, 24, 8, 25, 11, 30, 18, 7, 29, 20, 12, 5, 31, 26, 22, 19, 17, 16, 16, 17, 19, 22, 26, 31, 5, 12, 20, 29, 7, 18, 30, 11, 25, 8, 24, 9, 27, 14, 2, 23, 13, 4, 28, 21, 15, 10, 6, 3, 1, 0, 0, 1, 3, 6, 10, 15, 21, 28, 4, 13, 23, 2, 14, 27, 9, 24
Offset: 0

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Periodic with period length 64. - Ray Chandler, Apr 18 2025

Crossrefs

Cf. A000217.
See A105198 for further information.

Programs

Formula

From Chai Wah Wu, Apr 17 2025: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7) - a(n-8) + a(n-9) - a(n-10) + a(n-11) - a(n-12) + a(n-13) - a(n-14) + a(n-15) - a(n-16) + a(n-17) - a(n-18) + a(n-19) - a(n-20) + a(n-21) - a(n-22) + a(n-23) - a(n-24) + a(n-25) - a(n-26) + a(n-27) - a(n-28) + a(n-29) - a(n-30) + a(n-31) - a(n-32) + a(n-33) - a(n-34) + a(n-35) - a(n-36) + a(n-37) - a(n-38) + a(n-39) - a(n-40) + a(n-41) - a(n-42) + a(n-43) - a(n-44) + a(n-45) - a(n-46) + a(n-47) - a(n-48) + a(n-49) - a(n-50) + a(n-51) - a(n-52) + a(n-53) - a(n-54) + a(n-55) - a(n-56) + a(n-57) - a(n-58) + a(n-59) - a(n-60) + a(n-61) - a(n-62) + a(n-63) for n > 62.
G.f.: x*(-x^60 - 2*x^59 - 4*x^58 - 6*x^57 - 9*x^56 - 12*x^55 - 16*x^54 + 12*x^53 - 25*x^52 + 2*x^51 - 4*x^50 - 10*x^49 - 17*x^48 + 8*x^47 - 32*x^46 + 24*x^45 - 49*x^44 + 38*x^43 - 68*x^42 + 50*x^41 - 57*x^40 + 28*x^39 - 48*x^38 + 36*x^37 - 41*x^36 + 10*x^35 - 36*x^34 + 14*x^33 - 33*x^32 + 16*x^31 - 32*x^30 + 16*x^29 - 33*x^28 + 14*x^27 - 36*x^26 + 10*x^25 - 41*x^24 + 36*x^23 - 48*x^22 + 28*x^21 - 57*x^20 + 50*x^19 - 68*x^18 + 38*x^17 - 49*x^16 + 24*x^15 - 32*x^14 + 8*x^13 - 17*x^12 - 10*x^11 - 4*x^10 + 2*x^9 - 25*x^8 + 12*x^7 - 16*x^6 - 12*x^5 - 9*x^4 - 6*x^3 - 4*x^2 - 2*x - 1)/((x - 1)*(x^2 + 1)*(x^4 + 1)*(x^8 + 1)*(x^16 + 1)*(x^32 + 1)). (End)

A105335 a(n) = n*(n+1)/2 mod 64.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44, 5, 31, 58, 22, 51, 17, 48, 16, 49, 19, 54, 26, 63, 37, 12, 52, 29, 7, 50, 30, 11, 57, 40, 24, 9, 59, 46, 34, 23, 13, 4, 60, 53, 47, 42, 38, 35, 33, 32, 32, 33, 35, 38, 42, 47, 53, 60, 4, 13
Offset: 0

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Periodic with period length 128. - Ray Chandler, Apr 18 2025

Crossrefs

See A105198 for further information.
Cf. A018819.

Programs

  • Mathematica
    Mod[Accumulate[Range[0,80]],64] (* Harvey P. Dale, Jul 17 2020 *)

Formula

G.f. = p(x)/q(x) where p(x) has degree 124, and q(x) = (x-1)*(x^2+1)*(x^4+1)*(x^8+1)*(x^16+1)*(x^32+1)*(x^64+1), which has coefficients which are alternately +1 and -1 (when expanded). Compare the g.f. for binary partitions, A018819. - Harvey P. Dale and N. J. A. Sloane, Jul 17 2020

A105336 a(n) = n*(n+1)/2 mod 128.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 8, 25, 43, 62, 82, 103, 125, 20, 44, 69, 95, 122, 22, 51, 81, 112, 16, 49, 83, 118, 26, 63, 101, 12, 52, 93, 7, 50, 94, 11, 57, 104, 24, 73, 123, 46, 98, 23, 77, 4, 60, 117, 47, 106, 38, 99, 33, 96, 32, 97, 35, 102, 42
Offset: 0

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Periodic with period length 256. - Ray Chandler, Apr 18 2025

Crossrefs

See A105198 for further information.

Programs

  • Mathematica
    Mod[Accumulate[Range[0,70]],128] (* Harvey P. Dale, Oct 16 2013 *)

A105337 a(n) = n*(n+1)/2 mod 256.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 20, 44, 69, 95, 122, 150, 179, 209, 240, 16, 49, 83, 118, 154, 191, 229, 12, 52, 93, 135, 178, 222, 11, 57, 104, 152, 201, 251, 46, 98, 151, 205, 4, 60, 117, 175, 234, 38, 99
Offset: 0

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Periodic with period length 512. - Ray Chandler, Apr 18 2025

Crossrefs

See A105198 for further information.

Programs

  • Mathematica
    Mod[Accumulate[Range[0,70]],256] (* Harvey P. Dale, Nov 20 2020 *)

A105338 a(n) = n*(n+1)/2 mod 512.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 16, 49, 83, 118, 154, 191, 229, 268, 308, 349, 391, 434, 478, 11, 57, 104, 152, 201, 251, 302, 354, 407, 461, 4, 60, 117, 175, 234
Offset: 0

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Periodic with period length 1024. - Ray Chandler, Apr 18 2025

Crossrefs

See A105198 for further information.

Programs

  • Mathematica
    Mod[#,512]&/@Accumulate[Range[0,60]] (* Harvey P. Dale, Dec 01 2018 *)

A105339 a(n) = n*(n+1)/2 mod 1024.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 11, 57, 104, 152, 201, 251, 302, 354, 407, 461, 516, 572, 629
Offset: 0

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Periodic with period length 2048. - Ray Chandler, Apr 18 2025

Crossrefs

See A105198 for further information.

Programs

  • Mathematica
    Mod[Accumulate[Range[0,100]],1024] (* Harvey P. Dale, Jun 30 2017 *)

A105340 a(n) = n*(n+1)/2 mod 2048.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1830, 1891, 1953, 2016, 32
Offset: 0

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Period 4096. - Charles R Greathouse IV, Oct 16 2012

Crossrefs

See A105198 for further information.
Cf. A000217.

Programs

Extensions

Removed formulas that were wrong at indices >= 65 because the "mod 2048" part of the definition had been ignored R. J. Mathar, Jan 26 2010

A105198 a(n) = n(n+1)/2 mod 4.

Original entry on oeis.org

0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0
Offset: 0

Author

Oscar Takeshita, Apr 11 2005

Keywords

Comments

0,1,3,2,2,3,1,0 repeated indefinitely.
If N is any power of 2 then n(n+1)/2 mod N is a repeating pattern of length 2N. Moreover, the first N digits form a permutation P of A={0,1,...,N-1}. The subsequent N digits are P in the reversed order. The technique is useful for the generation of arbitrarily large pseudo-random permutations.

Crossrefs

Cf. triangular numbers A000217, A105332-A105340.
One less than A110549, A133882 shifted once right, with zero inserted to front.

Programs

Formula

From Paul Barry, Jul 26 2005: (Start)
G.f.: (x + 2x^2 + 2x^4 + x^5)/(1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7).
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7).
a(n) = cos(3*Pi*n/4 + Pi/4)/2 + (1/2 - sqrt(2)/2)*sin(3*Pi*n/4 + Pi/4) - (1/2 + sqrt(2)/2)*cos(Pi*n/4 + Pi/4) - sin(Pi*n/4 + Pi/4)/2 - cos(Pi*n/2)/2 + sin(Pi*n/2)/2 + 3/2. (End)
a(n) = (((n+1)^5 - n^5 - 1) mod 120)/30. - Gary Detlefs, Mar 25 2012
a(n) = -ceiling(n/2)*(-1)^n mod 4. - Wesley Ivan Hurt, Jul 13 2014

Extensions

More terms from James Sellers, Apr 21 2005