cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A110551 Period 6: repeat [1, 3, 5, 5, 3, 1].

Original entry on oeis.org

1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1
Offset: 0

Views

Author

Paul Barry, Jul 26 2005

Keywords

Comments

a(n) = A162699(n+1) (Modd 7) = A204453(A162699(n+1)), n>=0, where the nonnegative members of the seven residue classes Mod 7 (not to be confused with mod 7), called [m] for m=0..6, are given in the array A113807, if there the last row, starting with 7 is taken as class [0] after adding a 0 in front. Here only the classes [1], [3] and [5] are relevant. For Modd n residue classes see a comment on A203571. [Wolfdieter Lang, Feb 09 2012]
Continued fractions expansion of (8+sqrt(905))/29 = 1.3132144107925.. - R. J. Mathar, Mar 08 2012

Examples

			Modd 7 classes for positive odd numbers reduced mod 7: a(3)=5 because A162699(4)=9 (the fourth positive odd number not divisible by 7), and 9 is a member of the Modd 7 class [5] = {5,9,19,23,...}.
A162699: 1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27,...
Modd 7:  1, 3, 5, 5,  3,  1,  1,  3,  5,  5,  3,  1,... [_Wolfdieter Lang_, Feb 09 2012]
		

Crossrefs

Programs

Formula

From R. J. Mathar, Oct 15 2014: (Start)
G.f.: ( 1+x+x^2 ) / ( (1-x)*(x^2-x+1) ).
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = 3 + 2*sin(Pi*n/3)/sqrt(3) - 2*cos(Pi*n/3).
a(n) = A001045(n+2) mod 6. (End)
From Wesley Ivan Hurt, Jun 29 2016: (Start)
a(n) = a(n-6) for n>5.
a(n) = 2*a(n-1) - 2*a(n-2) + a(n-3) for n>2. (End)

A110549 Period 8: repeat [1, 2, 4, 3, 3, 4, 2, 1].

Original entry on oeis.org

1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1
Offset: 0

Views

Author

Paul Barry, Jul 26 2005

Keywords

Comments

Permutation of {1,2,3,4} followed by its reversal, repeated.
Continued fraction expansion of (337 + sqrt(905669))/890 = 1.44793981253727... - R. J. Mathar, Mar 08 2012

Crossrefs

One more than A105198.

Programs

Formula

G.f.: (1 + x + 3*x^2 + 3*x^4 + x^5 + x^6)/(1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7). [corrected by Georg Fischer, May 15 2019]
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7);
a(n) = cos(3*Pi*n/4 + Pi/4)/2 + (1/2 - sqrt(2)/2)*sin(3*Pi*n/4 + Pi/4) - (1/2 + sqrt(2)/2)*cos(Pi*n/4 + Pi/4) - sin(Pi*n/4 + Pi/4)/2 - cos(Pi*n/2)/2 + sin(Pi*n/2)/2 + 5/2.
a(n) = 1 + A105198(n).
a(n) = 1 + (A000217(n) mod 4). - Jon E. Schoenfield, Aug 11 2017

A133882 a(n) = binomial(n+2,n) mod 2^2.

Original entry on oeis.org

1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 2^3 = 8.

Crossrefs

For the sequence regarding "binomial(n+2, n) mod 2" see A133872.
A105198 shifted once left.

Programs

Formula

a(n) = binomial(n+2,2) mod 2^2.
G.f.: (1 + 3*x + 2*x^2 + 2*x^3 + 3*x^4 + x^5)/(1-x^8).
G.f.: (1+x)*(1+2*x+2*x^3+x^4)/(1-x^8) = (1+2*x+2*x^3+x^4)/((1-x)*(1+x^2)*(1+x^4)).
a(n) = A105198(n+1). - R. J. Mathar, Jun 08 2008

A110550 Periodic {1,3,2,4,4,2,3,1}.

Original entry on oeis.org

1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1
Offset: 0

Views

Author

Paul Barry, Jul 26 2005

Keywords

Comments

Permutation of {1,2,3,4} followed by its reversal, repeated.
Simple continued fraction expansion of (671 + sqrt 7241477)/2606. - R. J. Mathar, Mar 08 2012

Crossrefs

Programs

  • Mathematica
    PadRight[{}, 100, {1,3,2,4,4,2,3,1}] (* G. C. Greubel, Aug 31 2017 *)
  • PARI
    x='x+O('x^50); Vec((x^2+3*x+1)*(x^2-x+1)/((1-x)*(1+x^4))) \\ G. C. Greubel, Aug 31 2017
  • Scheme
    (define (A110550 n) (list-ref '(1 3 2 4 4 2 3 1) (modulo n 8))) ;; Antti Karttunen, Aug 10 2017
    

Formula

G.f.: -(x^2+3*x+1)*(x^2-x+1) / ( (x-1)*(1+x^4) ).
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7).

A105332 a(n) = n*(n+1)/2 mod 8.

Original entry on oeis.org

0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0, 0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0, 0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0, 0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0, 0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0, 0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0, 0, 1, 3, 6, 2, 7, 5, 4, 4
Offset: 0

Views

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Periodic with period length 16. - Ray Chandler, Apr 18 2025

Crossrefs

Cf. A000217.
See A105198 for further information.

Programs

A110569 Period 6: repeat [2, 1, 3, 3, 1, 2].

Original entry on oeis.org

2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2
Offset: 0

Views

Author

Paul Barry, Jul 27 2005

Keywords

Comments

Permutation of {1, 2, 3}, followed by its reversal, repeated.

Crossrefs

Programs

Formula

a(n) = 1+(A078008(n) mod 3).
G.f.: (2-x+4*x^2-x^3+2*x^4) / (1-x+x^2-x^3+x^4-x^5).
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = 2 + cos(2*Pi*n/3)/2 - sqrt(3)*sin(2*Pi*n/3)/2 - cos(Pi*n/3)/2 + sqrt(3)*sin(Pi*n/3)/6.
a(n) = a(n-6) for n>5. - Wesley Ivan Hurt, Jun 27 2016

Extensions

Name changed by Wesley Ivan Hurt, Jun 27 2016

A105340 a(n) = n*(n+1)/2 mod 2048.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1830, 1891, 1953, 2016, 32
Offset: 0

Views

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Period 4096. - Charles R Greathouse IV, Oct 16 2012

Crossrefs

See A105198 for further information.
Cf. A000217.

Programs

Extensions

Removed formulas that were wrong at indices >= 65 because the "mod 2048" part of the definition had been ignored R. J. Mathar, Jan 26 2010

A110568 Period 6: repeat [1, 0, 2, 2, 0, 1].

Original entry on oeis.org

1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2
Offset: 0

Views

Author

Paul Barry, Jul 27 2005

Keywords

Comments

Permutation of {0, 1, 2}, followed by its reversal, repeated.

Crossrefs

Programs

  • Magma
    &cat [[1, 0, 2, 2, 0, 1]^^30]; // Wesley Ivan Hurt, Jun 28 2016
    
  • Maple
    A110568:=n->[1, 0, 2, 2, 0, 1][(n mod 6)+1]: seq(A110568(n), n=0..100); # Wesley Ivan Hurt, Jun 28 2016
  • Mathematica
    Mod[#,3]&/@CoefficientList[Series[(1-x)/(1-x-2x^2),{x,0,100}],x] (* Harvey P. Dale, Mar 30 2011 *)
    PadRight[{}, 100, {1, 0, 2, 2, 0, 1}] (* Wesley Ivan Hurt, Jun 28 2016 *)
    LinearRecurrence[{1,-1,1,-1,1},{1,0,2,2,0},100] (* Harvey P. Dale, Apr 03 2019 *)
  • PARI
    x='x+O('x^50); Vec((1-x+3*x^2-x^3+x^4)/(1-x+x^2-x^3+x^4-x^5)) \\ G. C. Greubel, Aug 31 2017

Formula

a(n) = A078008(n) mod 3.
G.f.: (1-x+3*x^2-x^3+x^4) / (1-x+x^2-x^3+x^4-x^5).
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = 1 + cos(2*Pi*n/3)/2 - sqrt(3)*sin(2*Pi*n/3)/2 - cos(Pi*n/3)/2 + sqrt(3)*sin(Pi*n/3)/6.
a(n) = a(n-6) for n > 5. - Wesley Ivan Hurt, Jun 28 2016
a(n) = ((n-1)*(-1)^(n-1) mod 3). - Wesley Ivan Hurt, Jan 07 2021

Extensions

Name changed by Wesley Ivan Hurt, Jun 28 2016

A053794 a(n) = (n^2 + n) modulo 8.

Original entry on oeis.org

0, 2, 6, 4, 4, 6, 2, 0, 0, 2, 6, 4, 4, 6, 2, 0, 0, 2, 6, 4, 4, 6, 2, 0, 0, 2, 6, 4, 4, 6, 2, 0, 0, 2, 6, 4, 4, 6, 2, 0, 0, 2, 6, 4, 4, 6, 2, 0, 0, 2, 6, 4, 4, 6, 2, 0, 0, 2, 6, 4, 4, 6, 2, 0, 0, 2, 6, 4, 4, 6, 2, 0, 0, 2, 6, 4, 4, 6, 2, 0, 0, 2, 6, 4, 4, 6, 2, 0, 0, 2, 6, 4, 4, 6, 2, 0, 0, 2, 6, 4, 4, 6, 2, 0
Offset: 0

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Mar 27 2000

Keywords

Comments

Periodic with period 8.

Crossrefs

Programs

Formula

From Wesley Ivan Hurt, Jun 22 2022: (Start)
a(n) = 2*A105198(n).
a(n) = a(n-1)-a(n-2)+a(n-3)-a(n-4)+a(n-5)-a(n-6)+a(n-7). (End)

Extensions

More terms from James Sellers, Apr 08 2000
Extended to n=103 by Antti Karttunen, Aug 10 2017

A105333 a(n) = n*(n+1)/2 mod 16.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 5, 12, 4, 13, 7, 2, 14, 11, 9, 8, 8, 9, 11, 14, 2, 7, 13, 4, 12, 5, 15, 10, 6, 3, 1, 0, 0, 1, 3, 6, 10, 15, 5, 12, 4, 13, 7, 2, 14, 11, 9, 8, 8, 9, 11, 14, 2, 7, 13, 4, 12, 5, 15, 10, 6, 3, 1, 0, 0, 1, 3, 6, 10, 15, 5, 12, 4, 13, 7, 2, 14, 11, 9, 8, 8, 9, 11, 14, 2, 7, 13, 4, 12
Offset: 0

Views

Author

Oscar Takeshita, May 01 2005

Keywords

Comments

Triangular numbers mod 16. - Harvey P. Dale, Oct 12 2012
Periodic with period length 32. - Ray Chandler, Apr 18 2025

Crossrefs

Cf. A000217.
See A105198 for further information.

Programs

Formula

From Chai Wah Wu, Apr 17 2025: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7) - a(n-8) + a(n-9) - a(n-10) + a(n-11) - a(n-12) + a(n-13) - a(n-14) + a(n-15) - a(n-16) + a(n-17) - a(n-18) + a(n-19) - a(n-20) + a(n-21) - a(n-22) + a(n-23) - a(n-24) + a(n-25) - a(n-26) + a(n-27) - a(n-28) + a(n-29) - a(n-30) + a(n-31) for n > 30.
G.f.: x*(-x^28 - 2*x^27 - 4*x^26 - 6*x^25 - 9*x^24 + 4*x^23 - 16*x^22 + 12*x^21 - 25*x^20 + 18*x^19 - 20*x^18 + 6*x^17 - 17*x^16 + 8*x^15 - 16*x^14 + 8*x^13 - 17*x^12 + 6*x^11 - 20*x^10 + 18*x^9 - 25*x^8 + 12*x^7 - 16*x^6 + 4*x^5 - 9*x^4 - 6*x^3 - 4*x^2 - 2*x - 1)/((x - 1)*(x^2 + 1)*(x^4 + 1)*(x^8 + 1)*(x^16 + 1)). (End)
Showing 1-10 of 16 results. Next