A133900 a(n) = period of the sequence {b(m), m>=0}, defined by b(m):=binomial(m+n,n) mod n.
1, 4, 9, 16, 25, 72, 49, 64, 81, 400, 121, 864, 169, 784, 675, 256, 289, 2592, 361, 1600, 1323, 3872, 529, 3456, 625, 5408, 729, 3136, 841, 324000, 961, 1024, 9801, 18496, 6125, 31104, 1369, 23104, 13689, 32000, 1681, 254016, 1849, 15488, 30375, 33856
Offset: 1
Keywords
Examples
a(3)=9 since binomial(m+3,3) mod 3, m>=0, is periodic with period length 3^2=9 (see A133883). a(6)=72 since binomial(m+6,6) mod 6, m>=0, is periodic with period length 4*6^2=72 (see A133886).
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..111
Crossrefs
Formula
a(n)=n^2 if n is a prime or a power of a prime.
Comments