cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A171068 G.f. -x*(x-1)*(1+x)/(1-x-11*x^2-x^3+x^4).

Original entry on oeis.org

0, 1, 1, 11, 23, 144, 407, 2003, 6601, 28897, 103104, 425569, 1582009, 6337475, 24062039, 94930704, 364368599, 1426330907, 5505254161, 21464332033, 83084090112, 323270665729, 1253154734833, 4870751815931, 18895640474711
Offset: 0

Views

Author

R. J. Mathar, at the request of R. K. Guy, Sep 03 2010

Keywords

Comments

The member k=11 of a family of sequences starting 0,1,1,k with recurrence a(n) = a(n-1)+k*a(n-2)+a(n-3)-a(n-4).

Crossrefs

Cf. A116201 (k=1), A105309 (k=2), A152090 (k=3), A007598 (k=4), A005178 (k=5), A003757 (k=6).

Programs

  • Magma
    I:=[0, 1, 1, 11]; [n le 4 select I[n] else Self(n-1) + 11*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 11*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)

Formula

a(n)= +a(n-1) +11*a(n-2) +a(n-3) -a(n-4).

A171069 G.f. -x*(x-1)*(1+x)/(1-x-12*x^2-x^3+x^4).

Original entry on oeis.org

0, 1, 1, 12, 25, 169, 480, 2521, 8425, 38988, 142129, 615889, 2352000, 9845809, 38543569, 158429388, 628446025, 2558296441, 10219534560, 41389108489, 165953373625, 670283913612, 2692893971041, 10860865199521, 43679923392000
Offset: 0

Views

Author

R. J. Mathar, at the request of R. K. Guy, Sep 03 2010

Keywords

Comments

The member k=12 of a family of sequences starting 0,1,1,k with recurrence a(n) = a(n-1)+k*a(n-2)+a(n-3)-a(n-4).

Crossrefs

Cf. A116201 (k=1), A105309 (k=2), A152090 (k=3), A007598 (k=4), A005178 (k=5), A003757 (k=6).

Programs

  • Magma
    I:=[0, 1, 1, 12]; [n le 4 select I[n] else Self(n-1) + 12*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 12*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
    LinearRecurrence[{1,12,1,-1},{0,1,1,12},30] (* Harvey P. Dale, Nov 04 2024 *)

Formula

a(n)= +a(n-1) +12*a(n-2) +a(n-3) -a(n-4).

A218136 Norm of coefficients in the expansion of 1 / (1 - 3*x + 2*I*x^2), where I^2=-1.

Original entry on oeis.org

1, 9, 85, 873, 8845, 89505, 906373, 9177849, 92932285, 941010705, 9528455221, 96482899305, 976963204333, 9892500250113, 100169136977125, 1014289183762137, 10270454347410973, 103996211523970545, 1053041242918825621, 10662848608027795785, 107969503760905131085
Offset: 0

Views

Author

Paul D. Hanna, Oct 21 2012

Keywords

Comments

The radius of convergence of g.f. equals (9+sqrt(145) - 3*sqrt(2)*sqrt(9+sqrt(145)))/16 = 0.0987579662...

Examples

			G.f.: A(x) = 1 + 9*x + 85*x^2 + 873*x^3 + 8845*x^4 + 89505*x^5 + 906373*x^6 +...
The terms equal the norm of the complex coefficients in the expansion:
1/(1-3*x+2*I*x^2) = 1 + 3*x + (9 - 2*I)*x^2 + (27 - 12*I)*x^3 + (77 - 54*I)*x^4 + (207 - 216*I)*x^5 + (513 - 802*I)*x^6 + (1107 - 2820*I)*x^7 +...
so that
a(1) = 3^2, a(2) = 9^2 + 2^2, a(3) = 27^2 + 12^2, a(4) = 77^2 + 54^2, a(5) = 207^2 + 216^2, ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-4x^2)/(1-9x-8x^2-36x^3+16x^4),{x,0,20}],x] (* or *) LinearRecurrence[{9,8,36,-16},{1,9,85,873},30] (* Harvey P. Dale, Mar 22 2023 *)
  • PARI
    {a(n)=norm(polcoeff(1/(1-3*x+2*I*x^2+x*O(x^n)), n))}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: (1-4*x^2) / (1 - 9*x - 8*x^2 - 36*x^3 + 16*x^4).
Previous Showing 21-23 of 23 results.