A227343 Matrix inverse of triangle A227342.
1, 1, 1, 3, 3, 1, 13, 13, 6, 1, 75, 75, 37, 10, 1, 541, 541, 270, 85, 15, 1, 4683, 4683, 2341, 770, 170, 21, 1, 47293, 47293, 23646, 7861, 1890, 308, 28, 1, 545835, 545835, 272917, 90930, 22491, 4158, 518, 36, 1, 7087261, 7087261, 3543630, 1181125, 294525, 57351, 8400, 822, 45, 1
Offset: 0
Examples
Triangle begins n\k| 0 1 2 3 4 5 = = = = = = = = = = = = = = = = = 0 | 1 1 | 1 1 2 | 3 3 1 3 | 13 13 6 1 4 | 75 75 37 10 1 5 | 541 541 270 85 15 1 ... Connection constants. Row 4 = [75,75,37,10,1]: Thus 75 + 75*(x - 1) + 37*x*(x - 3) + 10*x*(x - 1)*(x - 5)+ x*(x - 1)*(x - 2)*(x - 7) = x^4.
References
- S. Roman, The umbral calculus, Pure and Applied Mathematics 111, Academic Press Inc., New York, 1984. Reprinted by Dover in 2005.
Links
- Eric Weisstein's World of Mathematics, Sheffer Sequence
Crossrefs
Programs
-
Mathematica
T[n_, k_] := n!/k! SeriesCoefficient[Series[1/(2 - Exp[t]) (Exp[t] - 1)^k, {t, 0, n}], n] Flatten[Table[T[n, k], {n, 0, 12}, {k, 0, n}]] U[n_, k_] := n!/k! SeriesCoefficient[Series[1/(1 - t^2) (t/Log[1 + t])^(n + 1), {t, 0, n - k}], n - k] Flatten[Table[U[n, k], {n, 0, 8}, {k, 0, n}]] (* Emanuele Munarini, Dec 21 2016 *)
Formula
E.g.f.: 1/(2 - exp(t))*exp(x*(exp(t) - 1)) = 1 + (1 + x)*t + (3 + 3*x + x^2)*t^2/2! + (13 + 13*x + 6*x^2 + x^3)*t^3/3! + ....
Recurrence equation: T(n,0) = A000670(n), and for k >= 1, T(n,k) = 1/k*sum {i = 1..n} binomial(n,i)*T(n-i,k-1).
The row polynomials R(n,x) satisfy the Sheffer identity R(n,x + y) = sum {k = 0..n} binomial(n,k)*Bell(k,y)*R(n-k,x), where Bell(k,y) is the Bell or exponential polynomial (row polynomials of A048993).
The row polynomials also satisfy d/dx(R(n,x)) = sum {k = 0..n-1} binomial(n,k)*R(k,x).
Row sums A059099. Column 1 and column 2 = A000670. 1 + 2*column 3 = A000670 (apart from the first two terms).
From Emanuele Munarini, Dec 21 2016: (Start)
T(n,k) = (n!/k!)*[t^n](exp(t)-1)^k/(2-exp(t)).
T(n,k) = (n!/k!)*[t^(n-k)](t/log(1+t))^(n+1)/(1-t^2). (End)
Comments