cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A227343 Matrix inverse of triangle A227342.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 13, 13, 6, 1, 75, 75, 37, 10, 1, 541, 541, 270, 85, 15, 1, 4683, 4683, 2341, 770, 170, 21, 1, 47293, 47293, 23646, 7861, 1890, 308, 28, 1, 545835, 545835, 272917, 90930, 22491, 4158, 518, 36, 1, 7087261, 7087261, 3543630, 1181125, 294525, 57351, 8400, 822, 45, 1
Offset: 0

Views

Author

Peter Bala, Jul 11 2013

Keywords

Comments

The e.g.f. has the form A(t)*exp(x*B(t)), where A(t) = 1/(2 - exp(t)) and B(t) = exp(t) - 1. Thus the row polynomials of this triangle form a Sheffer sequence for the pair (1 - t, log(1 + t)) (see Roman, p.17).
Let x_(k) := x*(x-1)*...*(x-k+1) denote the k-th falling factorial polynomial. Define a sequence x_[n] of basis polynomials for the polynomial algebra C[x] by setting x_[0] = 1, and setting x_[n] = x_(n-1)*(x - 2*n + 1) for n >= 1. The sequence begins [1, x-1, x*(x-3), x*(x-1)*(x-5), x*(x-1)*(x-2)*(x-7), ...]. Then this is the triangle of connection constants for expressing the monomial polynomials x^n as a linear combination of the basis x_[k], that is, x^n = sum {k = 0..n} T(n,k)*x_[k]. An example is given below.

Examples

			Triangle begins
n\k|   0    1    2    3    4    5
= = = = = = = = = = = = = = = = =
0 |   1
1 |   1    1
2 |   3    3    1
3 |  13   13    6    1
4 |  75   75   37   10    1
5 | 541  541  270   85   15    1
...
Connection constants. Row 4 = [75,75,37,10,1]: Thus
75 + 75*(x - 1) + 37*x*(x - 3) + 10*x*(x - 1)*(x - 5)+ x*(x - 1)*(x - 2)*(x - 7) = x^4.
		

References

  • S. Roman, The umbral calculus, Pure and Applied Mathematics 111, Academic Press Inc., New York, 1984. Reprinted by Dover in 2005.

Crossrefs

A000670 (columns 1 and 2), A048993, A059099 (row sums), A105794, A227342 (matrix inverse).

Programs

  • Mathematica
    T[n_, k_] := n!/k! SeriesCoefficient[Series[1/(2 - Exp[t]) (Exp[t] - 1)^k, {t, 0, n}], n]
    Flatten[Table[T[n, k], {n, 0, 12}, {k, 0, n}]]
    U[n_, k_] := n!/k! SeriesCoefficient[Series[1/(1 - t^2) (t/Log[1 + t])^(n + 1), {t, 0, n - k}], n - k]
    Flatten[Table[U[n, k], {n, 0, 8}, {k, 0, n}]] (* Emanuele Munarini, Dec 21 2016 *)

Formula

E.g.f.: 1/(2 - exp(t))*exp(x*(exp(t) - 1)) = 1 + (1 + x)*t + (3 + 3*x + x^2)*t^2/2! + (13 + 13*x + 6*x^2 + x^3)*t^3/3! + ....
Recurrence equation: T(n,0) = A000670(n), and for k >= 1, T(n,k) = 1/k*sum {i = 1..n} binomial(n,i)*T(n-i,k-1).
The row polynomials R(n,x) satisfy the Sheffer identity R(n,x + y) = sum {k = 0..n} binomial(n,k)*Bell(k,y)*R(n-k,x), where Bell(k,y) is the Bell or exponential polynomial (row polynomials of A048993).
The row polynomials also satisfy d/dx(R(n,x)) = sum {k = 0..n-1} binomial(n,k)*R(k,x).
Row sums A059099. Column 1 and column 2 = A000670. 1 + 2*column 3 = A000670 (apart from the first two terms).
From Emanuele Munarini, Dec 21 2016: (Start)
T(n,k) = (n!/k!)*[t^n](exp(t)-1)^k/(2-exp(t)).
T(n,k) = (n!/k!)*[t^(n-k)](t/log(1+t))^(n+1)/(1-t^2). (End)

A247493 Triangle read by rows: T(n, k) = C(n, k)*C(2*k, k)/(k+1) - sum(j = 0..k, (-1)^j*(1-j)^n*C(k, j)/k!), 0<=k<=n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 2, 6, 4, 0, 3, 11, 22, 13, 0, 4, 20, 45, 75, 41, 0, 5, 29, 110, 190, 261, 131, 0, 6, 42, 154, 560, 826, 938, 428, 0, 7, 55, 322, 749, 2646, 3570, 3452, 1429, 0, 8, 72, 335, 2499, 3885, 12012, 15198, 12897, 4861, 0, 9, 89, 770, 650, 16947, 21693, 53880, 63915, 48655, 16795, 0, 10, 110, 484, 11660, -8338, 97482
Offset: 0

Views

Author

Peter Luschny, Oct 02 2014

Keywords

Comments

First negative value appears at T(11,5). - Indranil Ghosh, Mar 04 2017

Examples

			0;
0, 0;
0, 1, 1;
0, 2, 6, 4;
0, 3, 11, 22, 13;
0, 4, 20, 45, 75, 41;
0, 5, 29, 110, 190, 261, 131;
0, 6, 42, 154, 560, 826, 938, 428;
		

Crossrefs

Programs

  • Maple
    T := proc(n, k) binomial(n,k)*binomial(2*k,k)/(k+1) - add((-1)^j*(1-j)^n /(j!*(k-j)!), j = 0..k) end:
    for n from 0 to 12 do seq(T(n,k), k=0..n) od;
  • Mathematica
    Flatten[Table[(Binomial[n,k] * Binomial[2k,k] / (k+1)) - Sum[(-1)^j*(1-j)^n*Binomial[k,j]/k!,{j,0,k}],{n,0,10},{k,0,n}]] (* Indranil Ghosh, Mar 04 2017 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1((binomial(n,k)*binomial(2*k,k)/(k+1))-sum(j=0, k, (-1)^j*(1-j)^n*binomial(k,j)/k!),", ",);); print(););};
    tabl(10); \\ Indranil Ghosh, Mar 04 2017

Formula

A105794(n, k) = (-1)^(n-k)*(C(n, k)*Catalan(k) - T(n, k)).
A247491(n) = Sum(k=0..n, (-1)^(n-k+1)*T(n, k)).
A001453(n) = T(n, n).
T(n,k) = A098474 (n,k) - A105794 (n,k). - Michel Marcus, Mar 04 2017

A132795 Triangle of Gely numbers, read by rows.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 5, 0, 1, 0, 16, 6, 1, 1, 0, 42, 56, 21, 0, 1, 0, 99, 316, 267, 36, 1, 1, 0, 219, 1408, 2367, 960, 85, 0, 1, 0, 466, 5482, 16578, 14212, 3418, 162, 1, 1, 0, 968, 19624, 99330, 153824, 77440, 11352, 341, 0, 1, 0, 1981, 66496, 534898, 1364848, 1233970, 389104, 36829, 672, 1
Offset: 0

Views

Author

Olivier Gérard, Aug 31 2007

Keywords

Comments

First row is for n=0. First column is for k=0.
Sum of rows is n! = permutations of n symbols (A000142)
These numbers are related to the Eulerian numbers A(n,k).
Third Column (k=2) is A002662(n+1).
Second Diagonal (k=n-1) is A132796.
Binomial transform of this triangle gives set partitions without singletons (in a form very close to array A105794).

Examples

			Triangle starts:
1;
1, 0;
1, 0, 1;
1, 0, 5, 0;
1, 0, 16, 6, 1;
1, 0, 42, 56, 21, 0;
...
		

References

  • Charles O. Gely, Un tableau de conversion des polynomes cyclotomiques cousin des nombres Euleriens, Preprint Univ. Paris 7, 1999.
  • Olivier Gérard, Quelques facons originales de compter les permutations, submitted to Knuth07.
  • Olivier Gérard and Karol Penson, Set partitions, Multiset permutations and bi-permutations, in preparation.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1990, p. 269.

Crossrefs

Programs

  • PARI
    T(n,k)= sum(j=0, k, (-1)^j*binomial(n+1, j)*sum(m=0, n, (k-j)^m)); \\ Michel Marcus, Jun 04 2014

Formula

T(n,k) = sum(j=0..k, (-1)^j*C(n+1,j)*sum(m=0..n, (k-j)^m) ).

A227341 Triangular array: Number of partitions of the vertex set of a forest of two trees on n vertices into k nonempty independent sets.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 0, 2, 4, 1, 0, 2, 10, 7, 1, 0, 2, 22, 31, 11, 1, 0, 2, 46, 115, 75, 16, 1, 0, 2, 94, 391, 415, 155, 22, 1, 0, 2, 190, 1267, 2051, 1190, 287, 29, 1, 0, 2, 382, 3991, 9471, 8001, 2912, 490, 37, 1, 0, 2, 766, 12355, 41875, 49476, 25473, 6342, 786, 46, 1
Offset: 1

Views

Author

Peter Bala, Jul 10 2013

Keywords

Comments

For a graph G and a positive integer k, the graphical Stirling number S(G;k) is the number of set partitions of the vertex set of G into k nonempty independent sets (an independent set in G is a subset of the vertices, no two elements of which are adjacent).
Here we take the graph G to be a forest of two trees on n vertices. The corresponding graphical Stirling numbers S(G;k) do not depend on the choice of the trees. See Galvin and Thanh. If the graph G is a single tree on n vertices then the graphical Stirling numbers S(G;k) are the classical Stirling numbers of the second kind A008277. See also A105794.

Examples

			Triangle begins
n\k | 1 2  3   4   5  6  7
= = = = = = = = = = = = =
  1 | 1
  2 | 1 1
  3 | 0 2  1
  4 | 0 2  4   1
  5 | 0 2 10   7   1
  6 | 0 2 22  31  11  1
  7 | 0 2 46 115  75 16  1
Connection constants: Row 5: 2*x*(x-1) + 10*x*(x-1)*(x-2) + 7*x*(x-1)*(x-2)*(x-3) + x*(x-1)*(x-2)*(x-3)*(x-4) = x^2*(x-1)^3.
		

Crossrefs

A008277, A011968 (row sums), A033484 (col. 3), A091344 (col. 4), A105794.

Formula

T(n,k) = Stirling2(n-1,k-1) + Stirling2(n-2,k-1), n,k >= 1.
Recurrence equation: T(n,k) = (k-1)*T(n-1,k) + T(n-1,k-1). Cf. A105794.
k-th column o.g.f.: x^k*(1+x)/((1-x)*(1-2*x)*...*(1-(k-1)*x)).
For n >= 2, sum {k = 0..n} T(n,k)*x_(k) = x^2*(x-1)^(n-2), where x_(k) = x*(x-1)*...*(x-k+1) is the falling factorial.
Column 3: A033484; Column 4: A091344; Row sums are essentially A011968.
Previous Showing 11-14 of 14 results.