A289562
Coefficients of 1/(q*(j(q)-1728))^3 where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, 2952, 5218884, 7138351488, 8319960432666, 8678332561127616, 8338315178481134040, 7518590274496806176256, 6444205834302869333758299, 5298802621872639665867604832, 4208666443076672300677008045636, 3246069554930472099322915758511872
Offset: 0
(q*(j(q)-1728))^(k/24):
A289563 (k=-96), this sequence (k=-72),
A289561 (k=-48),
A289417 (k=-24),
A289416 (k=-1),
A106203 (k=1),
A289330 (k=2),
A289331 (k=3),
A289332 (k=4),
A289333 (k=5),
A289334 (k=6),
A007242 (k=12),
A289063 (k=24).
-
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(-3), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
A289563
Coefficients of 1/(q*(j(q)-1728))^4 where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, 3936, 8895024, 15094625920, 21336320693400, 26506772152211520, 29887990556174431424, 31237788209244729015552, 30709242534935581933885740, 28700724444538653431660487520, 25706227251014342788669659769056, 22202613798662970539127791744222592
Offset: 0
(q*(j(q)-1728))^(k/24): this sequence (k=-96),
A289562 (k=-72),
A289561 (k=-48),
A289417 (k=-24),
A289416 (k=-1),
A106203 (k=1),
A289330 (k=2),
A289331 (k=3),
A289332 (k=4),
A289333 (k=5),
A289334 (k=6),
A007242 (k=12),
A289063 (k=24).
-
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(-4), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
A305756
Coefficients of (q*(j(q)-720))^(1/24) where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, 1, 8192, 707073, -754075135, -132208502783, 90102565204481, 25124693308972545, -11606164284986636798, -4751761734938773786110, 1495856955988144882193922, 890018844816101689979518466, -181104153998957724140261556733
Offset: 0
(q*(j(q)+144*k))^(1/24):
A106205 (k=0), this sequence (k=-5),
A106203 (k=-12).
(q*(j(q)-720))^(m/24):
A305760 (m=-24),
A305758 (m=-1), this sequence (m=1).
A289340
Coefficients of (q*(j(q)-1728))^(1/3) where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, -328, -41956, -8596032, -2597408634, -916285828640, -352170121921992, -143129703441671168, -60517599938503137519, -26355020095077489965264, -11743692598044815023990588, -5329748160859504303225598464
Offset: 0
-
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(1/3), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
A289339
Coefficients of (q*(j(q)-1728))^(7/24) where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, -287, -42595, -9750370, -3081185660, -1117168154431, -438204467218406, -181018051263504195, -77584080248087108885, -34183723168674046275385, -15388633770558568711781905, -7047808475666778827478858184
Offset: 0
-
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(7/24), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
A289344
Coefficients in expansion of E_2^(1/2)/Product_{k>=1} (1-q^k).
Original entry on oeis.org
1, -11, -118, -1473, -23635, -434861, -8659573, -181387821, -3936961298, -87743843970, -1996149058302, -46163368994680, -1082012001849499, -25646334881233711, -613664275728573585, -14803437882920457712, -359626550280367615329
Offset: 0
-
nmax = 20; CoefficientList[Series[Sqrt[1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]] / Product[1 - x^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 03 2017 *)
Comments