cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A308799 Primes p such that A001177(p) = (p-1)/6.

Original entry on oeis.org

541, 709, 2281, 2389, 2689, 4861, 5869, 7069, 8089, 8761, 8821, 8929, 9049, 9601, 10009, 10321, 10789, 12421, 12781, 13309, 13681, 14341, 14869, 14929, 16981, 19309, 19429, 19501, 19609, 20389, 21841, 22741, 23629, 24181, 24481, 25189, 26821, 27109, 27361, 27961
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/6, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 6. For even s, all terms are congruent to 1 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 2 | 78
4 | 14 | 609
5 | 147 | 4777
6 | 1216 | 39210
7 | 10477 | 332136
8 | 90720 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), this sequence (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 28000, p = NextPrime[p], If[Mod[p, 6] == 1, If[pn[p] == (p - 1)/6, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 28000, if(Entry_for_decomposing_prime(p)==(p-1)/6, print1(p, ", ")))

A308801 Primes p such that A001177(p) = (p-1)/8.

Original entry on oeis.org

89, 761, 769, 1009, 2089, 2441, 3881, 4201, 4289, 4729, 5209, 5441, 5849, 6521, 6761, 7369, 7841, 8009, 8081, 9929, 10601, 11489, 11689, 11801, 11969, 12401, 12409, 12569, 12889, 14009, 14249, 15889, 17449, 17609, 17881, 17929, 18121, 18169, 20201, 20249, 21929
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/8, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 8.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 3 | 78
4 | 20 | 609
5 | 154 | 4777
6 | 1278 | 39210
7 | 11063 | 332136
8 | 95613 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7), this sequence (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 22000, p = NextPrime[p], If[Mod[p, 8] == 1, If[pn[p] == (p - 1)/8, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 22000, if(Entry_for_decomposing_prime(p)==(p-1)/8, print1(p, ", ")))

A308802 Primes p such that A001177(p) = (p-1)/9.

Original entry on oeis.org

199, 919, 6679, 12979, 17011, 17659, 20431, 23059, 23599, 24391, 24859, 39079, 39439, 43399, 48619, 53479, 54091, 62011, 62191, 67411, 69499, 72019, 72091, 77419, 81019, 82279, 91099, 91459, 92179, 97579, 98731, 102259, 103231, 105211, 108271, 111439, 114679, 125119
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/9, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 9. For odd s, all terms are congruent to 3 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 2 | 78
4 | 3 | 609
5 | 31 | 4777
6 | 274 | 39210
7 | 2293 | 332136
8 | 20097 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7), A308801 (s=8), this sequence (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 50000, p = NextPrime[p], If[Mod[p, 9] == 1, If[pn[p] == (p - 1)/9, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 126000, if(Entry_for_decomposing_prime(p)==(p-1)/9, print1(p, ", ")))

A079346 Primes p such that F(p-(p/5)) is the first Fibonacci number that p divides.

Original entry on oeis.org

2, 3, 5, 7, 11, 19, 23, 31, 43, 59, 67, 71, 79, 83, 103, 127, 131, 163, 167, 179, 191, 223, 227, 239, 251, 271, 283, 311, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547, 571, 587, 599, 607, 631, 643, 647, 659, 683, 719, 727, 739, 751, 787, 823, 827
Offset: 1

Views

Author

Jon Perry, Jan 04 2003

Keywords

Comments

The n-th prime p is in this sequence iff A001602(n) = p-(5/p) (that is the maximum possible value of A001602(n)).

Examples

			7 belongs to this sequence since (7/5) = -1, F(8) = 21 and 7 does not divide F(1) to F(7).
		

Crossrefs

Union of A000057, A106535 and {5}.

Programs

  • PARI
    forprime (p=2,500, wss=p-kronecker(5,p); for(n=1, wss, if( fibonacci(n)%p==0, if( n==wss, print1(p","), break) ) ))

Extensions

Corrected and edited by Max Alekseyev, Nov 23 2007

A254141 The average of a(n) consecutive Fibonacci numbers is never an integer.

Original entry on oeis.org

8, 16, 21, 28, 32, 40, 52, 55, 56, 64, 65, 68, 69, 80, 84, 85, 87, 88, 92, 93, 99, 104, 105, 112, 117, 119, 128, 132, 133, 136, 140, 141, 145, 148, 152, 153, 155, 156, 160, 161, 164, 165, 171, 172, 176, 184, 187, 188, 196, 200, 203, 204, 205, 207, 208, 209, 212
Offset: 1

Views

Author

Paolo P. Lava, Jan 26 2015

Keywords

Comments

Subset of A033949 and A175594 (essentially the same sequence).
Numbers of the form 2^k, with k>=3, appear to be part of the sequence.
The file "List of indexes and steps (k, x, y)" (see Links) for k = 1, 2, 3, 4, ... consecutive Fibonacci numbers gives the minimum index to start to calculate the average ( x ) and the step to add to get all the other averages ( y ).
E.g.: for k = 7 we have 7, 6, 8. This means that we must start from the 6th Fibonacci number to add 7 consecutive Fibonacci numbers and get an average that is an integer. Fibonacci(6) + Fibonacci(7) + ... + Fibonacci(12) = 8 + 13 + 21 + 34 + 55 + 89 + 144 = 364 and 364 / 7 = 52.
Then 6 + 1*8 = 14, 6 + 2*8 = 22, 6 + 3*8 = 30, etc. are the other indexes:
Fibonacci(14) + Fibonacci (15) + ... + Fibonacci(20) = 377 + 610 + 987 + 1597 + 2584 + 4181 + 6765 = 17101 and 17101 / 7 = 2443;
Fibonacci(22) + Fibonacci(23) + ... + Fibonacci(28) = 17711 + 28657 + 46368 + 75025 + 121393 + 196418 + 317811 = 803383 and 803383 / 7 = 114769;
Fibonacci(30) + Fibonacci(31) + ... + Fibonacci(36) = 832040 + 1346269 + 2178309 + 3524578 + 5702887 + 9227465 + 14930352 = 37741900 and 37741900 / 7 = 5391700; etc.
In particular we note that:
x = 0 is A219612; x = 1 is A124456; x = 0 and y = k - 1 is A106535;
y = 1 is A141767; x = k - 1 and y = k + 1 is A000057;
x = y - 1 or y|k is A023172; y = k is A000351;
x = y - k + 1 appears to give only prime numbers: 3,11,19,31,59,71,79,131,179,191,239,251,271,311,359,379,419,431,439,479,491,499,571,599,631,659,719,739,751,839,971, etc.

Crossrefs

Programs

  • Maple
    with(numtheory); with(combinat):P:=proc(q) local a,b,k,j,n,ok;
    for j from 1 to q do b:=0; ok:=1;
    for n from 0 to q do a:=add(fibonacci(n+k),k=0..j-1)/j;
    if type(a,integer) then ok:=0; break; fi; od;
    if ok=1 then print(j); fi; od; end: P(20000);
Previous Showing 11-15 of 15 results.