cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A373913 Number of compositions of 8*n into parts 7 and 8.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 10, 46, 166, 496, 1288, 3004, 6437, 12888, 24464, 44728, 80428, 146320, 278104, 564929, 1225811, 2778772, 6396236, 14620646, 32760586, 71565796, 152344397, 316911454, 647536777, 1308456096, 2635130392, 5330198752, 10896635912
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2024

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x-x^7/(1-x)^7),{x,0,40}],x] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,9,-1},{1,1,1,1,1,1,1,2},40] (* Harvey P. Dale, Jul 29 2024 *)
  • PARI
    a(n) = sum(k=0, n\7, binomial(n+k, n-7*k));

Formula

a(n) = A017857(8*n).
a(n) = Sum_{k=0..floor(n/7)} binomial(n+k,n-7*k).
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 9*a(n-7) - a(n-8).
G.f.: 1/(1 - x - x^7/(1 - x)^7).
Previous Showing 11-11 of 11 results.