cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A126445 Triangle, read by rows, where T(n,k) = C(C(n+2,3) - C(k+2,3), n-k) for n >= k >= 0.

Original entry on oeis.org

1, 1, 1, 6, 3, 1, 120, 36, 6, 1, 4845, 969, 120, 10, 1, 324632, 46376, 4495, 300, 15, 1, 32468436, 3478761, 270725, 15180, 630, 21, 1, 4529365776, 377447148, 24040016, 1150626, 41664, 1176, 28, 1, 840261910995, 56017460733, 2967205528, 122391522, 3921225, 98770, 2016, 36, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Comments

Examples

			Formula: T(n,k) = C(C(n+2,3) - C(k+2,3), n-k) is illustrated by:
T(n=4,k=1) = C(C(6,3) - C(3,3), n-k) = C(19,3) = 969;
T(n=4,k=2) = C(C(6,3) - C(4,3), n-k) = C(16,2) = 120;
T(n=5,k=2) = C(C(7,3) - C(4,3), n-k) = C(31,3) = 4495.
Triangle begins:
           1;
           1,         1;
           6,         3,        1;
         120,        36,        6,       1;
        4845,       969,      120,      10,     1;
      324632,     46376,     4495,     300,    15,    1;
    32468436,   3478761,   270725,   15180,   630,   21,  1;
  4529365776, 377447148, 24040016, 1150626, 41664, 1176, 28, 1;
		

Crossrefs

Columns: A126446, A126447, A126448, A126449 (row sums).

Programs

  • Mathematica
    T[n_, k_]:= Binomial[Binomial[n+2,3] - Binomial[k+2,3], n-k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2022 *)
  • PARI
    T(n,k)=binomial(n*(n+1)*(n+2)/3!-k*(k+1)*(k+2)/3!, n-k)
    
  • Sage
    def A126445(n,k): return binomial(binomial(n+2,3) - binomial(k+2,3), n-k)
    flatten([[A126445(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 18 2022

Formula

T(n,k) = C(n*(n+1)*(n+2)/3! - k*(k+1)*(k+2)/3!, n-k) for n >= k >= 0.

A107866 Column 0 of triangle A107865.

Original entry on oeis.org

1, -1, -1, -7, -77, -1145, -21410, -481683, -12655196, -379998938, -12830421321, -480984691304, -19816691903510, -889846823832596, -43247136243424267, -2261480610502143020, -126596066994553497948, -7553154370244179931495, -478456478496821309024061
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=(matrix(n+1,n+1,r,c,if(r>=c, binomial((r-1)*(r-2)/2-(c-1)*(c-2)/2+r-c,r-c)))^-1)[n+1,1]}

A107889 Triangular matrix T, read by rows, that satisfies: [T^-k](n,k) = -T(n,k-1) for n >= k > 0, or, equivalently, (column k of T^-k) = -SHIFT_LEFT(column k-1 of T) when zeros above the diagonal are ignored. Also, matrix inverse of triangle A107876.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 0, -1, -1, 1, 0, -3, -2, -1, 1, 0, -15, -9, -3, -1, 1, 0, -106, -61, -18, -4, -1, 1, 0, -975, -550, -154, -30, -5, -1, 1, 0, -11100, -6195, -1689, -310, -45, -6, -1, 1, 0, -151148, -83837, -22518, -4005, -545, -63, -7, -1, 1, 0, -2401365, -1326923, -353211, -61686, -8105, -875, -84, -8, -1, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2005

Keywords

Comments

SHIFT_LEFT(column 1) = -A107878.
SHIFT_LEFT(column 2) = -A107883.
SHIFT_LEFT(column 3) = -A107888.

Examples

			G.f. for column 1:
1 = T(1,1)*(1-x)^-1 + T(2,1)*x*(1-x)^0 + T(3,1)*x^2*(1-x)^2 + T(4,1)*x^3*(1-x)^5 + T(5,1)*x^4*(1-x)^9 + T(6,1)*x^5*(1-x)^14 + ...
  = 1*(1-x)^-1 - 1*x*(1-x)^0 - 1*x^2*(1-x)^2 - 3*x^3*(1-x)^5 - 15*x^4*(1-x)^9 - 106*x^5*(1-x)^14 - 975*x^6*(1-x)^20 + ...
G.f. for column 2:
1 = T(2,2)*(1-x)^-1 + T(3,2)*x*(1-x)^1 + T(4,2)*x^2*(1-x)^4 + T(5,2)*x^3*(1-x)^8 + T(6,2)*x^4*(1-x)^13 + T(7,2)*x^5*(1-x)^19 + ...
  = 1*(1-x)^-1 - 1*x*(1-x)^1 - 2*x^2*(1-x)^4 - 9*x^3*(1-x)^8 - 61*x^4*(1-x)^13 - 550*x^5*(1-x)^19 - 6195*x^6*(1-x)^26 + ...
Triangle begins:
   1;
  -1,      1;
   0,     -1,     1;
   0,     -1,    -1,     1;
   0,     -3,    -2,    -1,    1;
   0,    -15,    -9,    -3,   -1,   1;
   0,   -106,   -61,   -18,   -4,  -1,  1;
   0,   -975,  -550,  -154,  -30,  -5, -1,  1;
   0, -11100, -6195, -1689, -310, -45, -6, -1, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    max = 10;
    A107862 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n - k], n - k], {n, 0, max}, {k, 0, max}];
    A107867 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n-k+1], n - k], {n, 0, max}, {k, 0, max}];
    T = Inverse[Inverse[A107862].A107867];
    Table[T[[n + 1, k + 1]], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 31 2024 *)
  • PARI
    {T(n,k)=polcoeff(1-sum(j=0,n-k-1, T(j+k,k)*x^j*(1-x+x*O(x^n))^(-1+(k+j)*(k+j-1)/2-k*(k-1)/2)),n-k)}

Formula

G.f. for column k: 1 = Sum_{j>=0} T(k+j, k)*x^j*(1-x)^(-1 + (k+j)*(k+j-1)/2 - k*(k-1)/2).
Previous Showing 11-13 of 13 results.