cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A378748 Möbius transform of A378747.

Original entry on oeis.org

1, 0, 1, 1, 2, 0, 4, 5, 7, 0, 5, 4, 7, 2, 5, 19, 8, 8, 10, 6, 11, 0, 13, 20, 16, 2, 41, 14, 14, 2, 17, 65, 11, 0, 19, 36, 19, 2, 17, 30, 20, 10, 22, 12, 39, 4, 25, 76, 48, 12, 17, 20, 28, 64, 21, 58, 23, 0, 29, 28, 32, 4, 73, 211, 31, 2, 34, 18, 31, 14, 35, 132, 38, 2, 49, 26, 43, 10, 40, 114, 223, 0, 43, 60, 33, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 09 2024

Keywords

Comments

No negative terms.

Crossrefs

Positions of 0's is given by {2} U A108605.

Programs

  • PARI
    A048673(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)+1)/2; };
    A378747(n) = (A048673(n)-(sigma(n)-n));
    A378748(n) = sumdiv(n,d,moebius(d)*A378747(n/d));

Formula

a(n) = Sum_{d|n} A008683(d)*A378747(n/d).
a(n) = A378521(n) - A051953(n).
For n > 1, a(n) = A000010(n) + A000010(A003961(n))/2 - n.

A108610 Semiprimes with prime sum of decimal digits and prime sum of prime factors.

Original entry on oeis.org

34, 58, 142, 214, 274, 298, 382, 454, 478, 562, 694, 838, 922, 1042, 1138, 1198, 1282, 1318, 1642, 1714, 2038, 2098, 2122, 2182, 2302, 2458, 2638, 2854, 2902, 2962, 3334, 3394, 3442, 3574, 3754, 3862, 4054, 4162, 4258, 4474, 4618, 4762, 5314, 5374, 5422
Offset: 1

Views

Author

Zak Seidov, Jun 12 2005

Keywords

Comments

Intersection of A108605 and A108606. All terms are even. Cf. A001358 semiprimes, A101605 3-almost primes, A108605 semiprimes with prime sum of factors, A108606 semiprimes with prime sum of digits.

Examples

			34=2*17 (semiprime), with 3+4=7 and 2+17=19 both prime.
		

Crossrefs

Programs

  • Mathematica
    psddQ[n_]:=!IntegerQ[Sqrt[n]]&&PrimeOmega[n]==2&&PrimeQ[Total[ IntegerDigits[n]]] && PrimeQ[Total[Transpose[FactorInteger[n]][[1]]]]; Select[Range[5500],psddQ] (* Harvey P. Dale, Oct 03 2012 *)

A176811 Number of primes between 2*(lesser of n-th twin prime pair) and 2*(greater of n-th twin prime pair).

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 1, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 26 2010

Keywords

Comments

Number of primes between 2*A001359(n) and 2*A006512(n).
Number of primes between A108605(n) and A176810(n).
Number of primes between 2*A077800(2n-1) and 2*A077800(2n).

Examples

			a(1)=1 because 2*3 < 7 (prime) < 2*5;
a(2)=2 because 2*5 < 11 (prime) < 13(prime) < 2*7;
a(3)=1 because 2*11 < 23 (prime) < 2*13.
		

Crossrefs

Programs

  • Maple
    A001359 := proc(n) option remember; if n = 1 then 3; else for a from procname(n-1)+2 by 2 do if isprime(a) and isprime(a+2) then return a; end if; end do: end if; end proc:
    A006512 := proc(n) A001359(n)+2 ; end proc:
    A176811 := proc(n) numtheory[pi](2*A006512(n)) - numtheory[pi](2*A001359(n)) ; end proc:
    seq(A176811(n),n=1..120) ; # R. J. Mathar, Apr 27 2010
  • Mathematica
    PrimePi[2*#[[2]]]-PrimePi[2*#[[1]]]&/@Select[Partition[Prime[Range[1000]],2,1],#[[2]]- #[[1]] == 2&] (* Harvey P. Dale, Jul 21 2023 *)

Extensions

Terms corrected starting at a(34) by R. J. Mathar, Apr 27 2010

A134622 Products pq ("semiprimes") of two primes p and q >= p such that q+2 is a prime.

Original entry on oeis.org

6, 9, 10, 15, 22, 25, 33, 34, 51, 55, 58, 77, 82, 85, 87, 118, 119, 121, 123, 142, 145, 177, 187, 202, 203, 205, 213, 214, 221, 274, 287, 289, 295, 298, 303, 319, 321, 355, 358, 377, 382, 394, 411, 413, 447, 451, 454, 478, 493, 497, 505, 533, 535, 537, 538, 551, 562, 573
Offset: 1

Views

Author

N. J. A. Sloane, Oct 17 2009

Keywords

Crossrefs

Cf. A108605.

Programs

  • Maple
    p:=ithprime;
    t1:=[];
    for i from 1 to 100 do
    p1:=p(i);
    for j from i to 100 do
    p2:=p(j);
    if isprime(p2+2) then t1:=[op(t1),p1*p2]; fi;
    od: od:
    t2:=sort(t1);
  • Mathematica
    Select[Range[573],PrimeOmega[#]==2&&PrimeQ[Divisors[#][[-2]]+2]&] (* James C. McMahon, Apr 08 2025 *)

A152126 If f(x) = x^3+x^5+x^11+x^17+x^29+x^41+..., where the exponents are the smaller twin of twin prime pairs, consider {f(x)}^2 and write the exponents of that expansion down : x^6+2x^8+x^10+2x^12+.... The proposed sequence is that sequence of exponents.

Original entry on oeis.org

6, 8, 10, 14, 16, 20, 22, 28, 32, 34, 40, 44, 46, 52, 58, 62, 64, 70, 74, 76, 82, 88, 100, 104, 106, 110, 112, 118, 124, 130, 136, 140, 142, 148, 152, 154, 160, 166, 172, 178, 182, 184, 190, 194, 196, 200, 202, 208, 214, 220, 226, 230, 232, 238, 242, 244, 250, 256, 262, 268, 272, 274, 280, 284, 286, 292
Offset: 1

Views

Author

Paul Bruckman (pbruckman(AT)hotmail.com), Nov 25 2008

Keywords

Comments

I would also like to tabulate the corresponding sequences for 3rd and higher powers of f(x) in separate sequences, maybe as far as 12th powers of f, assigning new numbers to each such sequence. For example, for the 3rd power, the sequence would begin {9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 31, etc. (the first "gap" appearing at 29). Each sequence would show no more than perhaps 500 (?) terms, or whatever number is needed to display a first gap.
Numbers of the form A001359(i)+A001359(j), including those of A108605 related to i=j. - R. J. Mathar, Nov 28 2008

Examples

			I would like to show that some power of f(x) (as low a power as possible) contains no gaps. By this, I mean that the sequence of numbers in the m-th power of f should have the same parity as m and should start with 3m and that the sequence of odd (or even) numbers should have no gaps.
		

Extensions

Corrected coefficient [x^10](f^2) in definition, inserted 34, extended. - R. J. Mathar, Nov 28 2008

A166305 Even semiprimes k such that the largest prime factor + 8 is a prime. Also semiprimes k such that k+16 is semiprime.

Original entry on oeis.org

6, 10, 22, 46, 58, 106, 118, 142, 178, 202, 262, 298, 346, 382, 466, 526, 538, 718, 778, 802, 862, 898, 958, 982, 1126, 1138, 1186, 1198, 1306, 1366, 1402, 1438, 1486, 1522, 1642, 1822, 1858, 1966, 2026, 2062, 2122, 2218, 2326, 2386, 2446, 2458, 2566, 2578
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 11 2009

Keywords

Crossrefs

Programs

  • Maple
    A006530 := proc(n) numtheory[factorset](n) ; max(op(%)) ; end proc: isA166305 := proc(n) if type(n,'even') then if numtheory[bigomega](n) = 2 then isprime(A006530(n)+8) ; else false; end if; else false; end if; end proc: for n from 4 to 3000 by 2 do if isA166305(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jan 30 2010
  • Mathematica
    Select[2*Range[1500],PrimeOmega[#]==PrimeOmega[#+16]==2&] (* Harvey P. Dale, Dec 28 2013 *)

Extensions

Extended by R. J. Mathar, Jan 30 2010

A258400 Perfect powers m^k such that m, k and m+k are primes.

Original entry on oeis.org

8, 9, 25, 32, 121, 289, 841, 1681, 2048, 3481, 5041, 10201, 11449, 18769, 22201, 32041, 36481, 38809, 51529, 57121, 72361, 78961, 96721, 120409, 131072, 175561, 185761, 212521, 271441, 323761, 358801, 380689, 410881, 434281, 654481, 674041, 683929, 734449
Offset: 1

Views

Author

Keywords

Comments

Necessarily either m or k = 2, thus if a(n) is even, it is a power of 2 with odd prime exponent, otherwise (if a(n) is odd), it is a square of odd prime.
For each term m^k, there will be another k^m.
a(3), a(5), a(11) are of the form n! + 1.
Let F(m,k) = m*k, such that m^k = a(n), so A108605 is a subsequence of F. For example a(1) = 2^3 and F(2,3) = A108605(1).

Examples

			a(1) = 8, because 8 = 2^3 and 2+3 = 5.
a(4) = 32, because 32 = 2^5 and 2+5 = 7.
a(5) = 121, because 121 = 11^2 and 11+2 = 13.
a(25) = 131072, because 131072 = 2^17 and 2+17 = 19.
		

Crossrefs

Subsequence of A001597, A000961.

Programs

  • Mathematica
    SmallestDivisor[n_] := If[n == 1, 1, Divisors[n][[2]]]; perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; ppl = Select[Range[200000], perfectPowerQ]; base[n_] := ppl[[n]]^(1/exp[n]); exp[n_] := SmallestDivisor[GCD @@ FactorInteger[ppl[[n]]][[All, 2]] ]; pp2l = Table[ {base[n], exp[n]}, {n, Length[ppl]}]; p[n_] := pp2l[[n]][[1]]; q[n_] := pp2l[[n]][[2]]; lt = Select[Range[Length[pp2l]], PrimeQ[p[#]] && PrimeQ[q[#]] && PrimeQ[p[#] + q[#]] &]; ppl[[lt]]
    Select[Range[10^6], Length[f = FactorInteger@ #] == 1 && PrimeQ@ f[[1, 2]] && PrimeQ@ Total@ f[[1]] &] (* Giovanni Resta, Jun 23 2015 *)

Extensions

a(28)-a(38) from Giovanni Resta, Jun 23 2015
Previous Showing 11-17 of 17 results.