cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A112271 One fifth of the sum of the first n primes, when an integer.

Original entry on oeis.org

1, 2, 20, 32, 88, 212, 296, 344, 1070, 1166, 1374, 1655, 2248, 2698, 3368, 3730, 3916, 4936, 5160, 5388, 6725, 6983, 8788, 11338, 12382, 12923, 13480, 15026, 16244, 17717, 19033, 19481, 19937, 21108, 24584, 29191, 30345, 33008, 33921, 34850
Offset: 1

Views

Author

Jonathan Vos Post, Nov 30 2005

Keywords

Examples

			a(1) = 1 = (2+3)/5 = A007504(2)/5 = 5/5.
a(2) = 2 = (2+3+5)/5 = A007504(3)/5 = 10/5.
a(3) = 20 = (2+3+5+7+11+13+17+19+23)/5 = A007504(9)/5 = 100/5.
a(4) = 32 = (2+3+5+7+11+13+17+19+23+29+31)/5 = A007504(11)/5 = 160/5.
a(5) = 88 = A007504(17)/5 = 440/5.
a(6) = 212 = A007504(25)/5 = 1060/5.
a(7) = 296 = A007504(29)/5 = 1480/5.
a(8) = 344 = A007504(31)/5 = 1720/5.
		

References

  • Bach, E. and Shallit, J. Sect. 2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, 1996.
  • H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.

Crossrefs

Programs

  • Mathematica
    s = 0; lst = {}; Do[s = s + Prime[n]; If[Mod[s, 5] == 0, AppendTo[lst, s/5]], {n, 250}]; lst (* Robert G. Wilson v, Dec 04 2005 *)
    Select[Accumulate[Prime[Range[400]]]/5,IntegerQ] (* Harvey P. Dale, May 03 2017 *)

Formula

{a(n)} = {A007504(k)/5 iff 5 | A007504(k)}. {a(n)} = {(p_1 + p_2 + ... + p_k)/5 iff the sum is an integer}. It is sufficient that A007504(k) == 0 (mod 10), but not necessary (the last five consecutive primes ending in 1 can give a solution). It is necessary that k = 2 or k is odd.

Extensions

More terms from Stefan Steinerberger and Robert G. Wilson v, Dec 04 2005
Previous Showing 11-11 of 11 results.