A112271 One fifth of the sum of the first n primes, when an integer.
1, 2, 20, 32, 88, 212, 296, 344, 1070, 1166, 1374, 1655, 2248, 2698, 3368, 3730, 3916, 4936, 5160, 5388, 6725, 6983, 8788, 11338, 12382, 12923, 13480, 15026, 16244, 17717, 19033, 19481, 19937, 21108, 24584, 29191, 30345, 33008, 33921, 34850
Offset: 1
Examples
a(1) = 1 = (2+3)/5 = A007504(2)/5 = 5/5. a(2) = 2 = (2+3+5)/5 = A007504(3)/5 = 10/5. a(3) = 20 = (2+3+5+7+11+13+17+19+23)/5 = A007504(9)/5 = 100/5. a(4) = 32 = (2+3+5+7+11+13+17+19+23+29+31)/5 = A007504(11)/5 = 160/5. a(5) = 88 = A007504(17)/5 = 440/5. a(6) = 212 = A007504(25)/5 = 1060/5. a(7) = 296 = A007504(29)/5 = 1480/5. a(8) = 344 = A007504(31)/5 = 1720/5.
References
- Bach, E. and Shallit, J. Sect. 2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, 1996.
- H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Leo Moser, Notes on number theory. III. On the sum of consecutive primes, Canad. Math. Bull. 6 (1963), pp. 159-161.
- Eric Weisstein's World of Mathematics, Prime Sums.
Programs
-
Mathematica
s = 0; lst = {}; Do[s = s + Prime[n]; If[Mod[s, 5] == 0, AppendTo[lst, s/5]], {n, 250}]; lst (* Robert G. Wilson v, Dec 04 2005 *) Select[Accumulate[Prime[Range[400]]]/5,IntegerQ] (* Harvey P. Dale, May 03 2017 *)
Formula
Extensions
More terms from Stefan Steinerberger and Robert G. Wilson v, Dec 04 2005