cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A111535 a(n) = A111534(n)/n = A111528(n,n)/n for n>=1.

Original entry on oeis.org

1, 2, 11, 104, 1409, 24912, 543479, 14098112, 423643509, 14464318560, 552830505347, 23375870438400, 1083128382648857, 54563592529048064, 2968656741661668975, 173460812744585863168, 10832194187368473624893
Offset: 1

Views

Author

Paul D. Hanna, Aug 06 2005

Keywords

Crossrefs

Cf: A111528 (table), A003319 (row 1), A111529 (row 2), A111530 (row 3), A111531 (row 4), A111532 (row 5), A111533 (row 6).

Programs

  • PARI
    {a(n)=if(n<1, 0, (1/n)*polcoeff(log(sum(m=0, n, (n-1+m)!/(n-1)!*x^m) + x*O(x^n)), n))}

Formula

a(n) = [x^n] (1/n)*Log( Sum_{m=0..n} (n-1+m)!/(n-1)!*x^m ) for n>=1.
a(n) ~ n! * 4^(n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 27 2015

Extensions

PARI program fixed by Vaclav Kotesovec, Jul 27 2015

A200545 Triangle T(n,k), read by rows, given by (1,0,2,1,3,2,4,3,5,4,6,5,7,6,8,7,9,8,...) DELTA (0,1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 13, 9, 1, 0, 1, 46, 56, 16, 1, 0, 1, 199, 334, 160, 25, 1, 0, 1, 1072, 2157, 1408, 365, 36, 1, 0, 1, 6985, 15701, 12445, 4417, 721, 49, 1, 0, 1, 53218, 129214, 116698, 50944, 11452, 1288, 64, 1, 0, 1, 462331, 1191336, 1183216, 597026, 166716, 25956, 2136, 81, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Nov 19 2011

Keywords

Comments

Row sums : A000142(n) = n!.

Examples

			Triangle begins :
1
1, 0
1, 1, 0
1, 4, 1, 0
1, 13, 9, 1, 0
1, 46, 56, 16, 1, 0
1, 199, 334, 160, 25, 1, 0
1, 1072, 2157, 1408, 365, 36, 1, 0
1, 6985, 15701, 12445, 4417, 721, 49, 1, 0
1, 53218, 129214, 116698, 50944, 11452, 1288, 64, 1, 0
		

Crossrefs

Programs

  • Mathematica
    DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x*r[[k + 1]] + y*s[[k + 1]]; p[0, ] = 1; p[, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k - 1] + q[k]*p[n - 1, k + 1] // Expand; t[n_, k_] := Coefficient[p[n, 0], x^(n - k)*y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]];
    m = 10;
    DELTA[LinearRecurrence[{1, 1, -1}, {1, 0, 2}, m], LinearRecurrence[{0, 1}, {0, 1}, m], m] // Flatten (* Jean-François Alcover, Feb 21 2019 *)

Formula

Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A172485(n+1), A146559(n), A000012(n), A000142(n), A003319(n), A111529(n), A111530(n), A111531(n), A111532(n), A111533(n) for x = -2,-1,0,1,2,3,4,5,6,7 respectively.
T(k+2,k)=(k+1)^2 = A000290(k+1).
T(n+1,1)= A014145(n).

A111555 Column 2 of triangle A111553.

Original entry on oeis.org

1, 3, 16, 116, 1016, 10176, 113216, 1375456, 18047296, 253815936, 3805221376, 60558070016, 1019617312256, 18111737604096, 338602832961536, 6648048064792576, 136810876329865216, 2945671077411987456
Offset: 0

Views

Author

Paul D. Hanna, Aug 07 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=if(n<0,0,(matrix(n+3,n+3,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+3)!/3!*x^i)),m-j-1))))^-1)[n+3,3])}
Previous Showing 11-13 of 13 results.