cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A124039 Triangle read by rows: T(n, k) = (-1)^floor((n+k+2)/2)*(2 - (-1)^(n+k))*A046854(n-1, k-1) with T(1, 1) = 3.

Original entry on oeis.org

3, 3, -1, -1, -3, 1, -3, 2, 3, -1, 1, 6, -3, -3, 1, 3, -3, -9, 4, 3, -1, -1, -9, 6, 12, -5, -3, 1, -3, 4, 18, -10, -15, 6, 3, -1, 1, 12, -10, -30, 15, 18, -7, -3, 1, 3, -5, -30, 20, 45, -21, -21, 8, 3, -1, -1, -15, 15, 60, -35, -63, 28, 24, -9, -3, 1
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Nov 03 2006

Keywords

Examples

			Triangle begins as:
   3;
   3,  -1;
  -1,  -3,   1;
  -3,   2,   3,  -1;
   1,   6,  -3,  -3,   1;
   3,  -3,  -9,   4,   3,  -1;
  -1,  -9,   6,  12,  -5,  -3,   1;
  -3,   4,  18, -10, -15,   6,   3, -1;
   1,  12, -10, -30,  15,  18,  -7, -3,  1;
   3,  -5, -30,  20,  45, -21, -21,  8,  3, -1;
  -1, -15,  15,  60, -35, -63,  28, 24, -9, -3,  1;
		

Crossrefs

Columns include: (-1)^n*A112030(n-1) (k=1), (-1)^floor((n+1)/2)*A064455(n) (k=2).

Programs

  • Magma
    A124039:= func< n,k | (-1)^Floor((n+k+2)/2)*(2-(-1)^(n+k))*Binomial(Floor((n+k-2)/2), k-1) + 2*0^(n-1) >;
    [A124039(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 30 2025
  • Mathematica
    (* First program *)
    f[n_, m_, d_]:= If[n==m && n>1 && m>1, 0, If[n==m-1 || n==m+1, -1, If[n==m== 1, 3, 0]]];
    M[d_]:= Table[T[n,m,d], {n,d}, {m,d}];
    A124039[n_]:= Join[{M[1]}, CoefficientList[Det[M[n] - x*IdentityMatrix[n]], x]];
    Table[A124039[n], {n,12}]//Flatten
    (* Second program *)
    A124039[n_, k_]:= (-1)^Floor[(n+k+2)/2]*(2-(-1)^(n-k))*Binomial[Floor[(n+k- 2)/2], k-1] +2*Boole[n==1];
    Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jan 30 2025 *)
  • SageMath
    @CachedFunction
    def t(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = 3*t(n-1,k) if n==1 else 0
        return t(n-1,k-1) - t(n-2,k) - h
    def A124039(n,k): return t(n,k) + 2*0^n
    print([[A124039(n,k) for k in range(n+1)] for n in range(13)]) # Peter Luschny, Nov 20 2012
    
  • SageMath
    def A124039(n,k): return (-1)^((n+k+2)//2)*(2-(-1)^(n+k))*binomial((n+k-2)//2, k-1) + 2*0^(n-1)
    print(flatten([[A124039(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Jan 30 2025
    

Formula

T(n, k) = (-1)^floor((n+k+2)/2)*(2 - (-1)^(n+k))*A046854(n-1,k-1) + 2*[n=1]. - G. C. Greubel, Jan 30 2025

Extensions

Edited by G. C. Greubel, Jan 30 2025

A139800 a(n)=a(n-1)+a(n-2)+a(n-3)+2a(n-4).

Original entry on oeis.org

1, 0, 0, 0, 2, 2, 4, 8, 18, 34, 68, 136, 274, 546, 1092, 2184, 4370, 8738, 17476, 34952, 69906, 139810, 279620, 559240, 1118482, 2236962, 4473924, 8947848, 17895698, 35791394, 71582788, 143165576, 286331154, 572662306, 1145324612, 2290649224
Offset: 0

Views

Author

Paul Curtz, May 22 2008

Keywords

Formula

O.g.f: (-1+x+x^2+x^3)/((2*x-1)(1+x)(1+x^2)). a(n)=2^n/15+(-1)^n/3+A112030(n)/5. - R. J. Mathar, Jun 12 2008

Extensions

More terms from R. J. Mathar, Jun 12 2008
Previous Showing 11-12 of 12 results.