cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A112068 Positive integers i for which A112049(i) == 8.

Original entry on oeis.org

180, 2855, 4199, 4619, 5195, 5399, 6719, 7475, 8555, 9000, 9815, 10739, 13859, 14340, 16235, 16319, 16524, 17159, 18299, 18564, 18744, 20015, 20579, 21359, 22320, 22524, 22619, 23759, 24275, 24504, 24960, 25884, 26544, 27455, 27720
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2005

Keywords

Crossrefs

Row 8 of A112060.

A112069 Positive integers i for which A112049(i) == 9.

Original entry on oeis.org

264, 5279, 7895, 17135, 19979, 25475, 26615, 26940, 32579, 34799, 41435, 42900, 43320, 44039, 44459, 46019, 46284, 48959, 51000, 56939, 58560, 61595, 64259, 64595, 65364, 69155, 71135, 72084, 76295, 78624, 79379, 82320, 83159, 83304
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2005

Keywords

Crossrefs

Row 9 of A112060.

A286579 Ordinal transform of A112049.

Original entry on oeis.org

1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 1, 2, 7, 8, 5, 6, 9, 10, 7, 8, 11, 12, 3, 1, 13, 14, 9, 10, 15, 16, 11, 12, 17, 18, 2, 4, 19, 20, 13, 14, 21, 22, 15, 16, 23, 24, 5, 6, 25, 26, 17, 18, 27, 28, 19, 20, 29, 30, 3, 1, 31, 32, 21, 22, 33, 34, 23, 24, 35, 36, 7, 8, 37, 38, 25, 26, 39, 40, 27, 28, 41, 42, 9, 1, 43, 44, 29
Offset: 1

Views

Author

Antti Karttunen, May 26 2017

Keywords

Crossrefs

Cf. A112049.

Programs

  • Mathematica
    A112049[n_] := For[i = 1, i <= 2n, i++, If[KroneckerSymbol[i, 2n+1] < 1, Return[PrimePi[i]]]];
    b[_] = 0;
    a[n_] := a[n] = With[{t = A112049[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 21 2021 *)

A112046 a(n) = the least k >= 1 for which the Jacobi symbol J(k,2n+1) is not +1 (thus is either 0 or -1).

Original entry on oeis.org

2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 5, 7, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 7, 5, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 7, 11, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 5, 13, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 7, 5, 2, 2, 3, 3, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2005

Keywords

Comments

If we instead list the least k >= 1, for which Jacobi symbol J(k,2n+1) is 0, we get A090368.
It is easy to see that every term is prime. Because the Jacobi symbol is multiplicative as J(ab,m) = J(a,m)*J(b,m) and if for every index i>=1 and < x, J(i,m)=1, then if J(x,m) is 0 or -1, x cannot be composite (say y*z, with both y and z less than x), as then either J(y,m) or J(z,m) would be non-one, which contradicts our assumption that x is the first index where non-one value appears. Thus x must be prime.

Crossrefs

One more than A112050.
Bisections: A112047, A112048, and their difference: A112053.

Programs

  • PARI
    A112046(n) = for(i=1, (2*n), if((kronecker(i, (n+n+1)) < 1), return(i))); \\ Antti Karttunen, May 26 2017
    
  • Python
    from sympy import jacobi_symbol as J
    def a(n):
        i=1
        while True:
            if J(i, 2*n + 1)!=1: return i
            else: i+=1
    print([a(n) for n in range(1, 103)]) # Indranil Ghosh, May 11 2017

Formula

a(n) = A112050(n) + 1 = A000040(A112049(n)).

A053761 Least positive integer k for which the Jacobi symbol (k|2*n-1) is less than 1, where 2*n-1 is a nonsquare; a(n)=0 if 2*n-1 is a square.

Original entry on oeis.org

0, 2, 2, 3, 0, 2, 2, 3, 3, 2, 2, 5, 0, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 5, 0, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 7, 5, 2, 2, 3, 0, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 7, 0, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 5, 0, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 7, 5, 2, 2, 3
Offset: 1

Views

Author

Steven Finch, Apr 05 2000

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 443-448.
  • Paulo Ribenboim, The New Book of Prime Number Records, 3rd ed., Springer-Verlag 1996; Math. Rev. 96k:11112.

Crossrefs

Programs

  • Maple
    A053761 := proc(n) if issqr(2*n-1) then return 0 ; else for k from 1 do if numtheory[jacobi](k,2*n-1) < 1 then return k; end if; end do: end if; end proc: seq(A053761(n),n=1..100) ; # R. J. Mathar, Aug 08 2010
  • Mathematica
    a[n_] := If[IntegerQ[Sqrt[2*n - 1]], Return[0], For[ k = 1, True, k++, If[ JacobiSymbol[k, 2*n - 1] < 1 , Return[k]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 20 2013, after R. J. Mathar *)
  • PARI
    A112046(n) = for(i=1,(2*n),if((kronecker(i,(n+n+1)) < 1),return(i)));
    A053761(n) = if(issquare((2*n)-1),0,A112046(n-1));
    for(n=1, 10000, write("b053761.txt", n, " ", A053761(n))); \\ Antti Karttunen, May 10 2017
    
  • Scheme
    (define (A053761 n) (if (= 1 n) 0 (* (- 1 (A010052 (+ n n -1))) (A112046 (- n 1))))) ;; Antti Karttunen, May 10 2017

Formula

a(1) = 0; for n > 1, a(n) = (1-A010052((2*n)-1)) * A112046(n-1). - Antti Karttunen, May 10 2017

Extensions

More terms from R. J. Mathar, Aug 08 2010

A286453 Compound filter: a(n) = P(A061395(n), A286465(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 2, 5, 11, 94, 5, 14, 254, 17, 9, 195, 47, 259, 500, 9, 11, 413, 138, 44, 303, 32, 20, 2784, 47, 354, 216, 5, 329, 506, 9, 77, 3161, 356, 35, 175, 107, 202, 2709, 216, 24, 11188, 14, 420, 356, 24, 285, 450, 498, 70, 2349, 35, 51, 115937, 5, 20, 329, 74, 310, 3420, 864, 1243, 336, 500, 11, 384, 20, 580, 47285, 87, 14, 615, 498, 1296, 3015, 9, 74, 3491, 216
Offset: 1

Views

Author

Antti Karttunen, May 14 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A061395(n)+A286465(n))^2) - A061395(n) - 3*A286465(n)).
Previous Showing 11-16 of 16 results.