cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A112113 G.f. A(x) satisfies A(A(A(..(A(x))..))) = B(x) (6th self-COMPOSE of A) such that the coefficients of B(x) consist only of numbers {1,2,3,..,6}, with B(0) = 0.

Original entry on oeis.org

1, 1, -4, 28, -236, 2159, -20309, 189387, -1696165, 14092143, -103605487, 621674576, -2503235595, 1311059747, 58857366823, -625935119621, 20416246154579, -595556154741631, 9331660766550500, -50486760747953952, -816026626910008666
Offset: 1

Views

Author

Paul D. Hanna, Aug 27 2005

Keywords

Examples

			A(x) = x + x^2 - 4*x^3 + 28*x^4 - 236*x^5 + 2159*x^6 +...
where A(A(A(A(A(A(x)))))) =
x + 6*x^2 + 6*x^3 + 3*x^4 + 4*x^5 + 4*x^6 + 6*x^7 + 2*x^8 +...
is the g.f. of A112112.
		

Crossrefs

Programs

  • PARI
    {a(n,m=6)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); return(polcoeff(F,n,x)))}

A112114 Unique sequence of numbers {1,2,3,...,7} where g.f. A(x) satisfies A(x) = B(B(B(..(B(x))..))) (7th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.

Original entry on oeis.org

1, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 5, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 7, 4, 7, 4, 4, 4, 3, 2, 5, 3, 1, 1, 7, 5, 2, 4, 2, 2, 1, 2, 6, 5, 1, 5, 7, 7, 7, 7, 5, 6, 5, 6, 4, 1, 6, 1, 2, 7, 1, 5, 3, 7, 2, 4, 4, 4, 3, 2, 4, 5, 7, 7, 3, 1, 2, 3, 5, 5, 6, 4, 7, 6, 1, 6, 5, 2, 1, 1, 6, 1, 4, 3, 1, 2, 3, 3, 3, 7, 1
Offset: 1

Views

Author

Paul D. Hanna, Aug 27 2005

Keywords

Examples

			G.f.: A(x) = x + 7*x^2 + 7*x^3 + 7*x^4 + 7*x^5 + 7*x^6 + 7*x^7 + ...
then A(x) = B(B(B(B(B(B(B(x))))))) where
B(x) = x + x^2 - 5*x^3 + 43*x^4 - 443*x^5 + 4957*x^6 - 57281*x^7 + ...
is the g.f. of A112115.
		

Crossrefs

Programs

  • PARI
    {a(n,m=7)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); G=F+x*O(x^n);for(i=1,m-1,G=subst(F,x,G)); return(polcoeff(G,n,x)))}

A112115 G.f. A(x) satisfies A(A(A(..(A(x))..))) = B(x) (7th self-COMPOSE of A) such that the coefficients of B(x) consist only of numbers {1,2,3,..,7}, with B(0) = 0.

Original entry on oeis.org

1, 1, -5, 43, -443, 4957, -57281, 661375, -7430526, 79197417, -778914398, 6845802239, -52074744048, 345158019601, -2374391391323, 20218882229451, -34682204747638, -6385759551091470, 180067413599721613, -2110513020510554883
Offset: 1

Views

Author

Paul D. Hanna, Aug 27 2005

Keywords

Examples

			A(x) = x + x^2 - 5*x^3 + 43*x^4 - 443*x^5 + 4957*x^6 - 57281*x^7 +...
where A(A(A(A(A(A(A(x))))))) =
x + 7*x^2 + 7*x^3 + 7*x^4 + 7*x^5 + 7*x^6 + 7*x^7 +...
is the g.f. of A112114.
		

Crossrefs

Programs

  • PARI
    {a(n,m=7)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); return(polcoeff(F,n,x)))}

A112116 Unique sequence of numbers {1,2,3,...,8} where g.f. A(x) satisfies A(x) = B(B(B(..(B(x))..))) (8th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.

Original entry on oeis.org

1, 8, 8, 4, 8, 4, 8, 8, 4, 8, 8, 4, 4, 8, 8, 4, 4, 8, 8, 2, 4, 6, 4, 6, 2, 4, 8, 8, 2, 2, 8, 4, 8, 2, 2, 8, 8, 6, 4, 4, 6, 2, 4, 3, 8, 5, 8, 8, 7, 5, 4, 3, 4, 6, 6, 2, 1, 7, 2, 7, 8, 8, 8, 2, 8, 8, 4, 2, 7, 8, 8, 5, 3, 4, 2, 6, 5, 1, 8, 7, 4, 1, 5, 4, 4, 7, 4, 2, 4, 7, 6, 4, 6, 2, 6, 3, 5, 6, 7, 2, 5, 7, 8, 8, 7
Offset: 1

Views

Author

Paul D. Hanna, Aug 27 2005

Keywords

Examples

			G.f.: A(x) = x + 8*x^2 + 8*x^3 + 4*x^4 + 8*x^5 + 4*x^6 + 8*x^7 +...
then A(x) = B(B(B(B(B(B(B(B(x)))))))) where
B(x) = x + x^2 - 6*x^3 + 60*x^4 - 720*x^5 + 9398*x^6 - 126958*x^7 +...
is the g.f. of A112117.
		

Crossrefs

Programs

  • PARI
    {a(n,m=8)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); G=F+x*O(x^n);for(i=1,m-1,G=subst(F,x,G)); return(polcoeff(G,n,x)))}

A112118 Unique sequence of numbers {1,2,3,...,9} where g.f. A(x) satisfies A(x) = B(B(B(..(B(x))..))) (9th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.

Original entry on oeis.org

1, 9, 9, 9, 6, 6, 3, 9, 6, 3, 9, 3, 3, 1, 7, 5, 9, 1, 8, 6, 2, 6, 4, 6, 7, 6, 4, 6, 3, 2, 5, 7, 2, 5, 7, 8, 1, 4, 9, 6, 3, 7, 6, 9, 1, 7, 7, 3, 7, 8, 7, 5, 7, 8, 9, 3, 8, 7, 9, 5, 3, 9, 9, 1, 5, 4, 5, 1, 7, 3, 1, 7, 8, 6, 1, 8, 4, 6, 8, 6, 5, 5, 9, 2, 6, 1, 5, 9, 8, 7, 2, 8, 8, 3, 2, 3, 9, 8, 2, 8, 4, 6, 1, 9, 4
Offset: 1

Views

Author

Paul D. Hanna, Aug 27 2005

Keywords

Examples

			G.f.: A(x) = x + 9*x^2 + 9*x^3 + 9*x^4 + 6*x^5 + 6*x^6 + 3*x^7 +...
then A(x) = B(B(B(B(B(B(B(B(B(x))))))))) where
B(x) = x + x^2 - 7*x^3 + 81*x^4 - 1122*x^5 + 16906*x^6 +...
is the g.f. of A112119.
		

Crossrefs

Programs

  • PARI
    {a(n,m=9)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); G=F+x*O(x^n);for(i=1,m-1,G=subst(F,x,G)); return(polcoeff(G,n,x)))}

A112119 G.f. A(x) satisfies A(A(A(..(A(x))..))) = B(x) (9th self-COMPOSE of A) such that the coefficients of B(x) consist only of numbers {1,2,3,..,9}, with B(0) = 0.

Original entry on oeis.org

1, 1, -7, 81, -1122, 16906, -264109, 4150081, -64119406, 955386299, -13491950523, 178108552187, -2193288809125, 25965294143459, -320197330438145, 4331428366450929, -54509980572007649, 309687851858995853, 8841175049606909354, -260481122023484957344, 727627679068983588258
Offset: 1

Views

Author

Paul D. Hanna, Aug 27 2005

Keywords

Examples

			A(x) = x + x^2 - 7*x^3 + 81*x^4 - 1122*x^5 + 16906*x^6 +...
where A(A(A(A(A(A(A(A(A(x))))))))) =
x + 9*x^2 + 9*x^3 + 9*x^4 + 6*x^5 + 6*x^6 + 3*x^7 +...
is the g.f. of A112118.
		

Crossrefs

Programs

  • PARI
    {a(n,m=9)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); return(polcoeff(F,n,x)))}

A112120 Unique sequence of numbers {1,2,3,...,10} where g.f. A(x) satisfies A(x) = B(B(B(..(B(x))..))) (10th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.

Original entry on oeis.org

1, 10, 10, 5, 10, 5, 8, 3, 4, 3, 2, 1, 9, 2, 8, 1, 7, 4, 9, 4, 7, 8, 2, 4, 5, 5, 6, 5, 6, 6, 6, 5, 6, 7, 3, 1, 2, 10, 10, 10, 5, 7, 10, 1, 4, 7, 1, 1, 5, 7, 2, 8, 9, 4, 3, 7, 5, 10, 4, 4, 9, 8, 7, 8, 4, 6, 7, 1, 2, 2, 3, 5, 9, 1, 10, 2, 5, 4, 5, 9, 3, 4, 10, 1, 1, 10, 4, 2, 6, 4, 8, 2, 2, 4, 9, 2, 10, 8, 4, 7
Offset: 1

Views

Author

Paul D. Hanna, Aug 27 2005

Keywords

Examples

			G.f.: A(x) = x + 10*x^2 + 10*x^3 + 5*x^4 + 10*x^5 + 5*x^6 +...
then A(x) = B(B(B(B(B(B(B(B(B(B(x)))))))))) where
B(x) = x + x^2 - 8*x^3 + 104*x^4 - 1619*x^5 + 27437*x^6 +...
is the g.f. of A112121.
		

Crossrefs

Programs

  • PARI
    {a(n,m=10)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); G=F+x*O(x^n);for(i=1,m-1,G=subst(F,x,G)); return(polcoeff(G,n,x)))}

A112121 G.f. A(x) satisfies A(A(A(..(A(x))..))) = B(x) (10th self-COMPOSE of A) such that the coefficients of B(x) consist only of numbers {1,2,3,..,10}, with B(0) = 0.

Original entry on oeis.org

1, 1, -8, 104, -1619, 27437, -482626, 8553639, -149434331, 2527339944, -40748011084, 619534898788, -8892967520397, 124088656925363, -1797865061490547, 28140512084643142, -424643873334235802, 4269156014010214570, 19251023484926369328, -1456780704021544219838
Offset: 1

Views

Author

Paul D. Hanna, Aug 27 2005

Keywords

Examples

			A(x) = x + x^2 - 8*x^3 + 104*x^4 - 1619*x^5 + 27437*x^6 +...
where A(A(A(A(A(A(A(A(A(A(x)))))))))) =
x + 10*x^2 + 10*x^3 + 5*x^4 + 10*x^5 + 5*x^6 + 8*x^7 +...
is the g.f. of A112120.
		

Crossrefs

Programs

  • PARI
    {a(n,m=10)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); return(polcoeff(F,n,x)))}

A112122 Unique sequence of numbers {1,2,3,...,11} where g.f. A(x) satisfies A(x) = B(B(B(..(B(x))..))) (11th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.

Original entry on oeis.org

1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 10, 11, 11, 11, 11, 11, 11, 11, 11, 10, 2, 7, 1, 1, 1, 1, 1, 1, 1, 11, 1, 10, 1, 3, 3, 3, 3, 3, 3, 2, 2, 10, 11, 11, 3, 3, 3, 3, 3, 2, 6, 9, 5, 3, 2, 4, 4, 4, 4, 3, 5, 11, 6, 7
Offset: 1

Views

Author

Paul D. Hanna, Aug 27 2005

Keywords

Examples

			G.f.: A(x) = x + 11*x^2 + 11*x^3 + 11*x^4 + 11*x^5 +...
then A(x) = B(B(B(B(B(B(B(B(B(B(B(x))))))))))) where
B(x) = x + x^2 - 9*x^3 + 131*x^4 - 2279*x^5 + 43161*x^6 +...
is the g.f. of A112123.
		

Crossrefs

Programs

  • PARI
    {a(n,m=11)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); G=F+x*O(x^n);for(i=1,m-1,G=subst(F,x,G)); return(polcoeff(G,n,x)))}

A112123 G.f. A(x) satisfies A(A(A(..(A(x))..))) = B(x) (11th self-COMPOSE of A) such that the coefficients of B(x) consist only of numbers {1,2,3,..,11}, with B(0) = 0.

Original entry on oeis.org

1, 1, -9, 131, -2279, 43161, -849269, 16866851, -331093879, 6316647841, -115528321709, 2007845708091, -33238536213650, 537616162919975, -8956186512464320, 158920634214746905, -2786226293720310297, 38547971903938600271, -198392033014273765511
Offset: 1

Views

Author

Paul D. Hanna, Aug 27 2005

Keywords

Examples

			A(x) = x + x^2 - 9*x^3 + 131*x^4 - 2279*x^5 + 43161*x^6 - 849269*x^7 +...
where A(A(A(A(A(A(A(A(A(A(A(x))))))))))) =
x + 11*x^2 + 11*x^3 + 11*x^4 + 11*x^5 + 11*x^6 + 11*x^7 +...
is the g.f. of A112122.
		

Crossrefs

Programs

  • PARI
    {a(n,m=11)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); return(polcoeff(F,n,x)))}
Previous Showing 11-20 of 23 results. Next