A230210
Trapezoid of dot products of row 7 (signs alternating) with sequential 8-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 8-tuples (C(7,0), -C(7,1), ..., C(7,6), -C(7,7)) and (C(n-1,k-7), C(n-1,k-6), ..., C(n-1,k)), n >= 1, 0 <= k <= n+6.
Original entry on oeis.org
-1, 7, -21, 35, -35, 21, -7, 1, -1, 6, -14, 14, 0, -14, 14, -6, 1, -1, 5, -8, 0, 14, -14, 0, 8, -5, 1, -1, 4, -3, -8, 14, 0, -14, 8, 3, -4, 1, -1, 3, 1, -11, 6, 14, -14, -6, 11, -1, -3, 1, -1, 2, 4, -10, -5, 20, 0, -20, 5, 10, -4, -2, 1, -1, 1, 6, -6, -15
Offset: 1
Trapezoid begins:
-1, 7, -21, 35, -35, 21, -7, 1;
-1, 6, -14, 14, 0, -14, 14, -6, 1;
-1, 5, -8, 0, 14, -14, 0, 8, -5, 1;
-1, 4, -3, -8, 14, 0, -14, 8, 3, -4, 1;
-1, 3, 1, -11, 6, 14, -14, -6, 11, -1, -3, 1;
-1, 2, 4, -10, -5, 20, 0, -20, 5, 10, -4, -2, 1;
-1, 1, 6, -6, -15, 15, 20, -20, -15, 15, 6, -6, -1, 1;
etc.
-
m:=7; [[k le 0 select (-1 )^m else (&+[(-1)^(j+m)* Binomial(m,j) *Binomial(n-1,k-j): j in [0..(n+m-1)]]): k in [0..(n+m-1)]]: n in [1..10]]; // G. C. Greubel, Nov 28 2018
-
Flatten[Table[CoefficientList[(x - 1)^7 (x + 1)^n, x], {n, 0, 7}]] (* T. D. Noe, Oct 25 2013 *)
m=7; Table[If[k == 0, (-1)^m, Sum[(-1)^(j+m)*Binomial[m, j]*Binomial[n-1, k-j], {j, 0, n+m-1}]], {n, 1, 10}, {k, 0, n+m-1}]//Flatten (* G. C. Greubel, Nov 28 2018 *)
-
m=7; for(n=1, 10, for(k=0, n+m-1, print1(if(k==0, (-1)^m, sum(j=0, n+m-1, (-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j))), ", "))) \\ G. C. Greubel, Nov 28 2018
-
m=7; [[sum((-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j) for j in range(n+m)) for k in range(n+m)] for n in (1..10)] # G. C. Greubel, Nov 28 2018
A230211
Trapezoid of dot products of row 8 (signs alternating) with sequential 9-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 9-tuples (C(8,0), -C(8,1), ..., -C(8,7), C(8,8)) and (C(n-1,k-8), C(n-1,k-7), ..., C(n-1,k)), n >= 1, 0 <= k <= n+7.
Original entry on oeis.org
1, -8, 28, -56, 70, -56, 28, -8, 1, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, 1, -6, 13, -8, -14, 28, -14, -8, 13, -6, 1, 1, -5, 7, 5, -22, 14, 14, -22, 5, 7, -5, 1, 1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1, 1, -3, -2, 14, -5, -25, 20, 20, -25, -5, 14
Offset: 1
Trapezoid begins:
1, -8, 28, -56, 70, -56, 28, -8, 1;
1, -7, 20, -28, 14, 14, -28, 20, -7, 1;
1, -6, 13, -8, -14, 28, -14, -8, 13, -6, 1;
1, -5, 7, 5, -22, 14, 14, -22, 5, 7, -5, 1;
1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1;
1, -3, -2, 14, -5, -25, 20, 20, -25, -5, 14, -2, -3, 1;
1, -2, -5, 12, 9, -30, -5, 40, -5, -30, 9, 12, -5, -2, 1;
etc.
-
m:=8; [[k le 0 select (-1 )^m else (&+[(-1)^(j+m)* Binomial(m,j) *Binomial(n-1,k-j): j in [0..(n+m-1)]]): k in [0..(n+m-1)]]: n in [1..10]]; // G. C. Greubel, Nov 28 2018
-
Flatten[Table[CoefficientList[(x - 1)^8 (x + 1)^n, x], {n, 0, 7}]] (* T. D. Noe, Oct 25 2013 *)
m=8; Table[If[k == 0, (-1)^m, Sum[(-1)^(j+m)*Binomial[m, j]*Binomial[n-1, k-j], {j, 0, n+m-1}]], {n, 1, 10}, {k, 0, n+m-1}]//Flatten (* G. C. Greubel, Nov 28 2018 *)
-
m=8; for(n=1, 10, for(k=0, n+m-1, print1(if(k==0, (-1)^m, sum(j=0, n+m-1, (-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j))), ", "))) \\ G. C. Greubel, Nov 28 2018
-
m=8; [[sum((-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j) for j in range(n+m)) for k in range(n+m)] for n in (1..10)] # G. C. Greubel, Nov 28 2018
A131085
Triangle T(n,k) (n>=0, 0<=k<=n-1) read by rows, A007318 * A129686.
Original entry on oeis.org
1, 1, 1, 0, 2, 1, -2, 2, 3, 1, -5, 0, 5, 4, 1, -9, -5, 5, 9, 5, 1, -14, -14, 0, 14, 14, 6, 1, -20, -28, -14, 14, 28, 20, 7, 1, -27, -48, -42, 0, 42, 48, 27, 8, 1, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1, -44, -110, -165, -132, 0, 132, 165, 110, 44, 10, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
0, 2, 1;
-2, 2, 3, 1;
-5, 0, 5, 4, 1;
-9, -5, 5, 9, 5, 1;
-14, -14, 0, 14, 14, 6, 1;
-20, -28, -14, 14, 28, 20, 7, 1;
-27, -48, -42, 0, 42, 48, 27, 8, 1;
-35, -75, -90, -42, 42, 90, 75, 35, 9, 1;
...
-
tabl(nn) = {t007318 = matrix(nn, nn, n, k, binomial(n-1, k-1)); t129686 = matrix(nn, nn, n, k, (k<=n)*((-1)^((n-k)\2)*((k==n) || (-1)*(k==(n-2))))); t131085 = t007318*t129686; for (n = 1, nn, for (k = 1, n, print1(t131085[n, k], ", ");););} \\ Michel Marcus, Feb 12 2014
Missing comma corrected by Naruto Canada, Aug 26 2007
Comments