cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A230210 Trapezoid of dot products of row 7 (signs alternating) with sequential 8-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 8-tuples (C(7,0), -C(7,1), ..., C(7,6), -C(7,7)) and (C(n-1,k-7), C(n-1,k-6), ..., C(n-1,k)), n >= 1, 0 <= k <= n+6.

Original entry on oeis.org

-1, 7, -21, 35, -35, 21, -7, 1, -1, 6, -14, 14, 0, -14, 14, -6, 1, -1, 5, -8, 0, 14, -14, 0, 8, -5, 1, -1, 4, -3, -8, 14, 0, -14, 8, 3, -4, 1, -1, 3, 1, -11, 6, 14, -14, -6, 11, -1, -3, 1, -1, 2, 4, -10, -5, 20, 0, -20, 5, 10, -4, -2, 1, -1, 1, 6, -6, -15
Offset: 1

Views

Author

Dixon J. Jones, Oct 12 2013

Keywords

Comments

The array is trapezoidal rather than triangular because C(n,k) is not uniquely defined for all negative n and negative k.
Row sums are 0.
Coefficients of (x-1)^7 (x+1)^(n-1), n > 0.

Examples

			Trapezoid begins:
  -1, 7, -21,  35, -35,  21,  -7,   1;
  -1, 6, -14,  14,   0, -14,  14,  -6,   1;
  -1, 5,  -8,   0,  14, -14,   0,   8,  -5,  1;
  -1, 4,  -3,  -8,  14,   0, -14,   8,   3, -4,  1;
  -1, 3,   1, -11,   6,  14, -14,  -6,  11, -1, -3,  1;
  -1, 2,   4, -10,  -5,  20,   0, -20,   5, 10, -4, -2,  1;
  -1, 1,   6,  -6, -15,  15,  20, -20, -15, 15,  6, -6, -1, 1;
etc.
		

Crossrefs

Using row j of the alternating Pascal triangle as generator: A007318 (j=0), A008482 and A112467 (j=1 after the first term in each), A182533 (j=2 after the first two rows), A230206-A230209 (j=3 to j=6), A230211-A230212 (j=8 and j=9).

Programs

  • Magma
    m:=7; [[k le 0 select (-1 )^m else (&+[(-1)^(j+m)* Binomial(m,j) *Binomial(n-1,k-j): j in [0..(n+m-1)]]): k in [0..(n+m-1)]]: n in [1..10]]; // G. C. Greubel, Nov 28 2018
    
  • Mathematica
    Flatten[Table[CoefficientList[(x - 1)^7 (x + 1)^n, x], {n, 0, 7}]] (* T. D. Noe, Oct 25 2013 *)
    m=7; Table[If[k == 0, (-1)^m, Sum[(-1)^(j+m)*Binomial[m, j]*Binomial[n-1, k-j], {j, 0, n+m-1}]], {n, 1, 10}, {k, 0, n+m-1}]//Flatten (* G. C. Greubel, Nov 28 2018 *)
  • PARI
    m=7; for(n=1, 10, for(k=0, n+m-1, print1(if(k==0, (-1)^m, sum(j=0, n+m-1, (-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j))), ", "))) \\ G. C. Greubel, Nov 28 2018
    
  • Sage
    m=7; [[sum((-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j) for j in range(n+m)) for k in range(n+m)] for n in (1..10)] # G. C. Greubel, Nov 28 2018

Formula

T(n,k) = Sum_{i=0..n+m-1} (-1)^(i+m)*C(m,i)*C(n-1,k-i), n >= 1, with T(n,0) = (-1)^m and m=7.

A230211 Trapezoid of dot products of row 8 (signs alternating) with sequential 9-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 9-tuples (C(8,0), -C(8,1), ..., -C(8,7), C(8,8)) and (C(n-1,k-8), C(n-1,k-7), ..., C(n-1,k)), n >= 1, 0 <= k <= n+7.

Original entry on oeis.org

1, -8, 28, -56, 70, -56, 28, -8, 1, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, 1, -6, 13, -8, -14, 28, -14, -8, 13, -6, 1, 1, -5, 7, 5, -22, 14, 14, -22, 5, 7, -5, 1, 1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1, 1, -3, -2, 14, -5, -25, 20, 20, -25, -5, 14
Offset: 1

Views

Author

Dixon J. Jones, Oct 12 2013

Keywords

Comments

The array is trapezoidal rather than triangular because C(n,k) is not uniquely defined for all negative n and negative k.
Row sums are 0.
Coefficients of ((x-1)^8)(x+1)^(n-1), n > 0.

Examples

			Trapezoid begins:
  1, -8, 28, -56,  70, -56,  28,  -8,   1;
  1, -7, 20, -28,  14,  14, -28,  20,  -7,   1;
  1, -6, 13,  -8, -14,  28, -14,  -8,  13,  -6,  1;
  1, -5,  7,   5, -22,  14,  14, -22,   5,   7, -5,  1;
  1, -4,  2,  12, -17,  -8,  28,  -8, -17,  12,  2, -4,  1;
  1, -3, -2,  14,  -5, -25,  20,  20, -25,  -5, 14, -2, -3, 1;
  1, -2, -5,  12,   9, -30,  -5,  40,  -5, -30,  9, 12, -5, -2, 1;
etc.
		

Crossrefs

Using row j of the alternating Pascal triangle as generator: A007318 (j=0), A008482 and A112467 (j=1 after the first term in each), A182533 (j=2 after the first two rows), A230206-A230210 (j=3 to j=7), A230212 (j=9).

Programs

  • Magma
    m:=8; [[k le 0 select (-1 )^m else (&+[(-1)^(j+m)* Binomial(m,j) *Binomial(n-1,k-j): j in [0..(n+m-1)]]): k in [0..(n+m-1)]]: n in [1..10]]; // G. C. Greubel, Nov 28 2018
    
  • Mathematica
    Flatten[Table[CoefficientList[(x - 1)^8 (x + 1)^n, x], {n, 0, 7}]] (* T. D. Noe, Oct 25 2013 *)
    m=8; Table[If[k == 0, (-1)^m, Sum[(-1)^(j+m)*Binomial[m, j]*Binomial[n-1, k-j], {j, 0, n+m-1}]], {n, 1, 10}, {k, 0, n+m-1}]//Flatten (* G. C. Greubel, Nov 28 2018 *)
  • PARI
    m=8; for(n=1, 10, for(k=0, n+m-1, print1(if(k==0, (-1)^m, sum(j=0, n+m-1, (-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j))), ", "))) \\ G. C. Greubel, Nov 28 2018
    
  • Sage
    m=8; [[sum((-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j) for j in range(n+m)) for k in range(n+m)] for n in (1..10)] # G. C. Greubel, Nov 28 2018

Formula

T(n,k) = Sum_{i=0..n+m-1} (-1)^(i+m)*C(m,i)*C(n-1,k-i), n >= 1, with T(n,0) = (-1)^m and m=8.

A131085 Triangle T(n,k) (n>=0, 0<=k<=n-1) read by rows, A007318 * A129686.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, -2, 2, 3, 1, -5, 0, 5, 4, 1, -9, -5, 5, 9, 5, 1, -14, -14, 0, 14, 14, 6, 1, -20, -28, -14, 14, 28, 20, 7, 1, -27, -48, -42, 0, 42, 48, 27, 8, 1, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1, -44, -110, -165, -132, 0, 132, 165, 110, 44, 10, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 14 2007

Keywords

Comments

Row sums = n.
A131085 * A000012 = A074909 starting (1, 2, 1, 3, 3, ...) instead of (1, 1, 2, 1, 3, 3, ...).

Examples

			First few rows of the triangle are:
   1;
   1,  1;
   0,  2, 1;
  -2,  2, 3, 1;
  -5,  0, 5, 4, 1;
  -9, -5, 5, 9, 5, 1;
-14, -14, 0, 14, 14, 6, 1;
-20, -28, -14, 14, 28, 20, 7, 1;
-27, -48, -42, 0, 42, 48, 27, 8, 1;
-35, -75, -90, -42, 42, 90, 75, 35, 9, 1;
   ...
		

Crossrefs

Programs

  • PARI
    tabl(nn) = {t007318 = matrix(nn, nn, n, k, binomial(n-1, k-1)); t129686 = matrix(nn, nn, n, k, (k<=n)*((-1)^((n-k)\2)*((k==n) || (-1)*(k==(n-2))))); t131085 = t007318*t129686; for (n = 1, nn, for (k = 1, n, print1(t131085[n, k], ", ");););} \\ Michel Marcus, Feb 12 2014

Formula

Binomial transform of A129686 signed with (1, 1, 1, ...) in the main diagonal and (-1, -1, -1, ...) in the subsubdiagonal.
T(n,m) = T(n-1,m-1) + T(n-1,m). - Yuchun Ji, Dec 17 2018
T(2*k,k-1) = 0 for k > 0. - Yuchun Ji, Dec 20 2018
Comparing this triangle with the Catalan triangle A009766 one can see many similarities. For example, T(k+j,k) = A009766(k+1,j) for j < k+2. - Yuchun Ji, Dec 23 2018 [Edited by N. J. A. Sloane, Feb 11 2019]

Extensions

Missing comma corrected by Naruto Canada, Aug 26 2007
More terms from Michel Marcus, Feb 12 2014
Offset changed by N. J. A. Sloane, Feb 11 2019
Previous Showing 21-23 of 23 results.