cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A207541 Expansion of phi(q)^3 * phi(-q) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 4, 0, -16, -8, 24, 0, -32, 24, 52, 0, -48, -32, 56, 0, -96, 24, 72, 0, -80, -48, 128, 0, -96, 96, 124, 0, -160, -64, 120, 0, -128, 24, 192, 0, -192, -104, 152, 0, -224, 144, 168, 0, -176, -96, 312, 0, -192, 96, 228, 0, -288, -112, 216, 0, -288, 192, 320, 0
Offset: 0

Views

Author

Michael Somos, Feb 26 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 4*q - 16*q^3 - 8*q^4 + 24*q^5 - 32*q^7 + 24*q^8 + 52*q^9 - 48*q^11 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, q]^3*EllipticTheta[3, 0, -q], {q, 0, n}]; Table[A207541[n], {n, 0, 50}] (* G. C. Greubel, Dec 16 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^3))^2, n))}

Formula

Expansion of phi(-q^4)^4 + 4 * q * psi(-q^2)^4 = phi(q)^3 * phi(-q) = phi(q)^2 * phi(-q^2)^2 = psi(q)^4 * chi(-q^2)^6 = phi(-q^2)^6 / phi(-q)^2 = f(q)^6 / psi(q)^2 = f(q)^4 * chi(-q^2)^2 in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of (eta(q^2)^7 / (eta(q)^2 * eta(q^4)^3))^2 in powers of q.
Euler transform of period 4 sequence [ 4, -10, 4, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 128 (t/i)^2 g(t) where q = exp(2 Pi i t) and g(t) is g.f. for A112610.
G.f.: Product_{k>0} (1 - x^(2*k))^14 / ((1 - x^k)^4 * (1 - x^(4*k))^6).
a(3*n + 2) = 24 * A208435(n). a(4*n + 2) = 0. a(2*n + 1) = 4 * A121613(n). a(4*n) = A096727(n). a(4*n + 1) = 4 * A112610(n). a(4*n + 3) = -16 * A097723(n). Convolution square of A139093.

A321527 Expansion of x^3 * c(x^2) * c(x^4)^2 / (9 * c(x)) in powers of x where c() is a cubic AGM theta function.

Original entry on oeis.org

0, 0, 0, 1, -1, 0, 2, 0, -3, 4, 0, 0, 1, 0, 0, 6, -7, 0, 8, 0, -6, 8, 0, 0, -1, 0, 0, 13, -8, 0, 12, 0, -15, 12, 0, 0, 7, 0, 0, 14, -18, 0, 16, 0, -12, 24, 0, 0, -5, 0, 0, 18, -14, 0, 26, 0, -24, 20, 0, 0, 6, 0, 0, 32, -31, 0, 24, 0, -18, 24, 0, 0, 5, 0, 0, 31
Offset: 0

Views

Author

Michael Somos, Nov 12 2018

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Number 124 of the 126 eta-quotients listed in Table 1 of Williams 2012.

Examples

			G.f. = x^3 - x^4 + 2*x^6 - 3*x^8 + 4*x^9 + x^12 + 6*x^15 - 7*x^16 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(12), 2), 76); A[4] - A[5];
  • Mathematica
    a[ n_] := SeriesCoefficient[ x^3 QPochhammer[ x, x^2] QPochhammer[ x^12]^6 / (QPochhammer[ x^3, x^6]^3 QPochhammer[ x^4]^2), {x, 0, n}];
    a[ n_] := With[ {s = If[ FractionalPart @ # > 0, 0, DivisorSigma[1, #]] &}, If[ n < 1, 0, s[n/3] - s[n/4] - s[n/6] + s[n/12]]];
    a[ n_] := If[ n < 1, 0, Sum[ d {0, 0, 4, -3, 0, 2, 0, -3, 4, 0, 0, 0}[[Mod[d, 12, 1]]] / 12, {d, Divisors[n]}]];
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d * [0, 0, 0, 4, -3, 0, 2, 0, -3, 4, 0, 0][d%12 + 1] / 12))};
    
  • PARI
    {a(n) = my(s = x -> if( frac(x), 0, sigma(x))); if( n<1, 0, s(n/3) - s(n/4) - s(n/6) + s(n/12))};
    
  • PARI
    {a(n) = my(A); n-=3; if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^3 * eta(x^12 + A)^6 / (eta(x^2 + A) * eta(x^3 + A)^3 * eta(x^4 + A)^2), n))};
    

Formula

Expansion of x^3 * (psi(x^3) * psi(x^6))^3 / (psi(x) * psi(x^2)) in powers of x where psi() is a Ramanujan theta function.
Expansion of x^3 * chi(-x) * f(-x^12)^6 / (chi(-x^3)^3 * f(-x^4)^2) in powers of x where chi(), f() are Ramanujan theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (1/6) (t / i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A321528.
a(n) = s(n/3) - s(n/4) - s(n/6) + s(n/12) where s(x) = sum of divisors of x for integer x else 0.
a(6*n + 1) = a(6*n + 5) = a(12*n + 2) = a(12*n + 10) = 0.
a(n) = A224226(n) if n>0. a(2*n) = -A229615(n). a(6*n + 3) = A008438(n). a(12*n + 6) = 2*A008438(n).
a(12*n + 3) = A112610(n). a(12*n + 4) = -A144614(n). a(12*n + 8) = -3*A033686(n). a(12*n + 9) = 4*A097723(n).

A133657 Expansion of q * (phi(q) * psi(q^4))^2 in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 4, 4, 0, 6, 16, 8, 0, 13, 24, 12, 0, 14, 32, 24, 0, 18, 52, 20, 0, 32, 48, 24, 0, 31, 56, 40, 0, 30, 96, 32, 0, 48, 72, 48, 0, 38, 80, 56, 0, 42, 128, 44, 0, 78, 96, 48, 0, 57, 124, 72, 0, 54, 160, 72, 0, 80, 120, 60, 0, 62, 128, 104, 0, 84, 192, 68, 0, 96
Offset: 1

Views

Author

Michael Somos, Sep 20 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 4*q^2 + 4*q^3 + 6*q^5 + 16*q^6 + 8*q^7 + 13*q^9 + 24*q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q^2]/2)^2, {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
    a[n_] := Switch[IntegerExponent[n, 2], 0, DivisorSigma[1, n], 1, 4*DivisorSigma[1, n/2], , 0]; Array[a, 100] (* _Amiram Eldar, Nov 12 2022 *)
  • PARI
    {a(n) = if( n<1, 0, if( n%2, sigma(n), if( n%4, 4 * sigma(n/2), 0)))};
    
  • PARI
    {a(n) = my(A); if ( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 * eta(x^8 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^3) )^2, n))};

Formula

Expansion of (eta(q^2)^5 * eta(q^8)^2 / (eta(q)^2 * eta(q^4)^3))^2 in powers of q.
Euler transform of period 8 sequence [ 4, -6, 4, 0, 4, -6, 4, -4, ...].
a(n) is multiplicative with a(2) = 4, a(2^e) = 0 if e>1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133690.
a(4*n) = 0. a(4*n+2) = 4 * sigma(2*n+1). a(2*n+1) = sigma(2*n+1).
a(n) = -(-1)^n * A121455(n). Convolution square of A113411.
a(2*n + 1) = A008438. a(4*n + 1) = A112610(n). a(4*n + 3) = 4 * A097723(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/16 = 0.6168502... (A222068). - Amiram Eldar, Nov 12 2022

A252922 a(n) = sigma(n-1) + sigma(n-2) + sigma(n-3), with a(1)=0, a(2)=1, a(3)=4.

Original entry on oeis.org

0, 1, 4, 8, 14, 17, 25, 26, 35, 36, 46, 43, 58, 54, 66, 62, 79, 73, 88, 77, 101, 94, 110, 92, 120, 115, 133, 113, 138, 126, 158, 134, 167, 143, 165, 150, 193, 177, 189, 154, 206, 188, 228, 182, 224, 206, 234, 198, 244, 229, 274, 222, 263, 224, 272, 246, 312, 272, 290, 230, 318, 290, 326, 262, 327, 315, 355, 296
Offset: 1

Views

Author

Omar E. Pol, Dec 24 2014

Keywords

Comments

This is also a rectangular array read by rows, with four columns, in which T(j,k) is the number of cells (also the area) of the j-th gap between the arms in the k-th quadrant of the spiral of the symmetric representation of sigma described in A239660, with j >= 1 and 1 <= k <= 4 and starting with T(1,1) = 0, see example.
We can find the spiral (mentioned above) on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016

Examples

			a(5) = sigma(4) + sigma(3) + sigma(2) = 7 + 4 + 3 = 14. On the other hand a(5) = A024916(4) - A024916(1) = 15 - 1 = 14.
...
Also, if written as a rectangular array T(j,k) with four columns the sequence begins:
    0,   1,   4,   8;
   14,  17,  25,  26;
   35,  36,  46,  43;
   58,  54,  66,  62;
   79,  73,  88,  77;
  101,  94, 110,  92;
  120, 115, 133, 113;
  138, 126, 158, 134;
  167, 143, 165, 150;
  193, 177, 189, 154;
  206, 188, 228, 182;
  224, 206, 234, 198;
  244, 229, 274, 222;
  263, 224, 272, 246;
  312, 272, 290, 230;
  318, 290, 326, 262;
  ...
In this case T(2,1) = a(5) = 14.
		

Crossrefs

Programs

  • Maple
    L:= [0,0,0,seq(numtheory:-sigma(n), n=1..100)]:
    L[1..101]+L[2..102]+L[3..103]; # Robert Israel, Dec 07 2016
  • Mathematica
    a252922[n_] := Block[{f}, f[1] = 0; f[2] = 1; f[3] = 4;
      f[x_] := DivisorSigma[1, x - 1] + DivisorSigma[1, x - 2] +
    DivisorSigma[1, x - 3]; Table[f[i], {i, n}]]; a252922[68] (* Michael De Vlieger, Dec 27 2014 *)
  • PARI
    v=concat([0,1,4],vector(100,n,sigma(n)+sigma(n+1)+sigma(n+2))) \\ Derek Orr, Dec 30 2014

Formula

a(1) = 0, a(2) = sigma(1) = 1, a(3) = sigma(2) + sigma(1) = 4; for n >= 4, a(n) = sigma(n-1) + sigma(n-2) + sigma(n-3).
a(n) = A024916(n-1) - A024916(n-4) for n >= 5.

A133691 Expansion of (1 - (phi(-q) * phi(q^2))^2) / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 4, -6, 6, -8, 8, -6, 13, -12, 12, -24, 14, -16, 24, -6, 18, -26, 20, -36, 32, -24, 24, -24, 31, -28, 40, -48, 30, -48, 32, -6, 48, -36, 48, -78, 38, -40, 56, -36, 42, -64, 44, -72, 78, -48, 48, -24, 57, -62, 72, -84, 54, -80, 72, -48, 80, -60, 60, -144
Offset: 1

Views

Author

Michael Somos, Sep 20 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 2*q^2 + 4*q^3 - 6*q^4 + 6*q^5 - 8*q^6 + 8*q^7 - 6*q^8 + 13*q^9 - ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := Which[ n < 1, 0, OddQ[n], DivisorSigma[ 1, n], True, -2 DivisorSum[ n/2, # Boole[Mod[#, 4] > 0] &]]; (* Michael Somos, Oct 30 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - (EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^2])^2) / 4, {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
  • PARI
    {a(n) = if( n<1, 0, n%2, sigma(n), -2 * sumdiv(n/2, d, if(d%4, d)))};

Formula

Expansion of (1 - (eta(q)^2 * eta(q^4)^5 / (eta(q^2)^3 * eta(q^8)^2))^2) / 4 in powers of q.
a(n) is multiplicative with a(2) = -2, a(2^e) = -6 if e>1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
a(n) = -4 * A133690(n) = -(-1)^n * A111973(n). a(2*n) = -2 * A046897(n). a(2*n + 1) = A008438(n). a(4*n) = -6 * A000593(n). a(4*n + 1) = A112610(n). a(4*n + 3) = 4 * A097723(n).
Dirichlet g.f.: zeta(s) * zeta(s-1) * (1 - 5/2^s + 1/2^(2*s-1) + 1/2^(3*s-3)). - Amiram Eldar, Oct 28 2023

A208451 Expansion of phi(q) * phi(-q)^3 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -4, 0, 16, -8, -24, 0, 32, 24, -52, 0, 48, -32, -56, 0, 96, 24, -72, 0, 80, -48, -128, 0, 96, 96, -124, 0, 160, -64, -120, 0, 128, 24, -192, 0, 192, -104, -152, 0, 224, 144, -168, 0, 176, -96, -312, 0, 192, 96, -228, 0, 288, -112, -216, 0, 288, 192, -320
Offset: 0

Views

Author

Michael Somos, Feb 26 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 4*q + 16*q^3 - 8*q^4 - 24*q^5 + 32*q^7 + 24*q^8 - 52*q^9 + 48*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(16), 2), 58); A[1] - 4*A[2] + 16*A[4] - 8*A[5]; /* Michael Somos, Aug 21 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^2 QPochhammer[ q^2] / QPochhammer[ q^4])^2, {q, 0, n}]; (* Michael Somos, Aug 21 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, if( n%4 == 2, 0, -4 * if( n%2, (-1)^(n\2) * sigma(n), -2 * (-1)^(n\4) * sumdiv( n\4, d, if( d%4, d)))))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^2 + A) / eta(x^4 + A))^2, n))};
    

Formula

Expansion of phi(-q^4)^4 - 4 * q * psi(-q^2)^4 = phi(q) * phi(-q)^3 = phi(-q)^2 * phi(-q^2)^2 = phi(-q^2)^6 / phi(q)^2 = psi(-q)^4 * chi(-q^2)^6 = f(-q)^4 * chi(-q^2)^2 = f(-q)^6 / psi(-q)^2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (eta(q)^2 * eta(x^2) / eta(x^4))^2 in powers of q.
Euler transform of period 4 sequence [ -4, -6, -4, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 5128 (t/i)^2 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A097723.
a(4*n + 2) = 0. a(2*n + 1) = -4 * A121613(n). a(4*n) = A096727(n). a(4*n + 1) = -4 * A112610(n). a(4*n + 3) = 16 * A097723(n). a(8*n) = A004011(n). a(8*n + 4) = -8 * A008438(n).
Previous Showing 11-16 of 16 results.