cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A061400 Primes p such that there is no squarefree number between p and the next prime.

Original entry on oeis.org

2, 3, 11, 17, 59, 71, 97, 107, 149, 179, 191, 197, 227, 239, 269, 311, 347, 349, 419, 431, 521, 599, 659, 809, 827, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1277, 1319, 1427, 1447, 1451, 1487, 1607, 1619, 1663, 1667, 1787, 1871, 1931, 1949, 1997, 2027, 2087
Offset: 1

Views

Author

Labos Elemer, Jun 07 2001

Keywords

Comments

Primes in sequence A112925. - Leroy Quet, Oct 06 2005

Examples

			Between 71 and 73, the only composite is 72 = 2*2*2*3*3, not squarefree. Each of the integers between 97 and 101 has at least one squared divisor.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local p,B,j: p:=ithprime(n): B:={}: for j from 1 to p-1 do if abs(mobius(j))>0 then B:=B union {j} else B:=B fi od: B[nops(B)] end: A:=[seq(a(m),m=1..400)]: b:=proc(k) if isprime(A[k])=true then A[k] else fi end: seq(b(i),i=1..400); # Emeric Deutsch, Oct 14 2005
  • Mathematica
    Select[Prime@ Range@ 310, Count[Range[# + 1, NextPrime@ # - 1], k_ /; SquareFreeQ@ k] == 0 &] (* Michael De Vlieger, Feb 19 2017 *)
  • PARI
    { n=0; p=2; forprime (q=3, 109621, c=0; for (i=p+1, q-1, c+=issquarefree(i); if (c, break)); if (c==0, write("b061400.txt", n++, " ", p)); p=q ) } \\ Harry J. Smith, Jul 22 2009

Extensions

Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar

A112928 Primes in sequence A112926.

Original entry on oeis.org

3, 5, 13, 19, 61, 73, 101, 109, 151, 181, 193, 199, 229, 241, 271, 313, 349, 353, 421, 433, 523, 601, 661, 811, 829, 883, 1021, 1033, 1051, 1063, 1093, 1153, 1279, 1321, 1429, 1451, 1453, 1489, 1609, 1621, 1667, 1669, 1789, 1873, 1933, 1951, 1999, 2029
Offset: 1

Views

Author

Leroy Quet, Oct 06 2005

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local p,B,j: p:=ithprime(n): B:={}: for j from p+1 to p+20 do if abs(mobius(j))>0 then B:=B union {j} else B:=B fi od: B[1] end: A:=[seq(a(m),m=1..400)]: b:=proc(k) if isprime(A[k])=true then A[k] else fi end: seq(b(i),i=1..400); # Emeric Deutsch, Oct 14 2005
  • Mathematica
    With[{k = 120}, Select[Table[SelectFirst[Range[Prime@ n + 1, Prime@ n + k], SquareFreeQ], {n, 300}], PrimeQ]] (* Michael De Vlieger, Sep 11 2017 *)

Extensions

More terms from Emeric Deutsch, Oct 14 2005

A112930 a(n) = order of n-th term of A112926 among squarefree integers.

Original entry on oeis.org

3, 4, 5, 7, 9, 10, 13, 14, 17, 19, 21, 25, 28, 30, 32, 34, 38, 39, 43, 46, 47, 51, 53, 57, 62, 63, 65, 68, 69, 72, 79, 82, 85, 87, 93, 94, 97, 101, 104, 106, 110, 111, 118, 119, 122, 123, 131, 140, 142, 143, 146, 150, 151, 155, 159, 163, 167, 168, 171, 173
Offset: 1

Views

Author

Leroy Quet, Oct 06 2005

Keywords

Examples

			The 5th term of A112926 is 13 and 13 is the 9th squarefree integer (with 1 counted as the first squarefree integer). So a(5) = 9.
		

Crossrefs

Programs

  • Mathematica
    With[{k = 120, s = Select[Range[10^4], SquareFreeQ]}, Flatten@ Array[Position[s, SelectFirst[Range[Prime@ # + 1, Prime@ # + k], SquareFreeQ]] &, 60]] (* Michael De Vlieger, Aug 16 2017 *)

Extensions

More terms from Diana L. Mecum, Jun 13 2007

A169646 Number of squarefree numbers of form k*n, 1 <= k <= n.

Original entry on oeis.org

1, 1, 2, 0, 3, 2, 5, 0, 0, 3, 7, 0, 8, 5, 6, 0, 11, 0, 12, 0, 8, 9, 15, 0, 0, 10, 0, 0, 17, 8, 19, 0, 13, 13, 15, 0, 23, 15, 17, 0, 26, 11, 28, 0, 0, 18, 30, 0, 0, 0, 21, 0, 32, 0, 25, 0, 23, 23, 36, 0, 37, 25, 0, 0, 30, 18, 41, 0, 29, 22, 44, 0, 45, 30, 0, 0, 36, 22, 49, 0, 0, 32, 51, 0, 41, 34
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 05 2010

Keywords

Crossrefs

Programs

Formula

a(n) = A008966(n)*A073311(n).
a(A000040(n)) = A112929(n).
a(n) = Sum_{i=1..n} A008966(n*i). - Ridouane Oudra, Jul 24 2019
a(n) = (A118259(n) - A118259(n-1))/2, for n>1. - Ridouane Oudra, May 04 2025
Sum_{k=1..n} a(k) ~ c * n / 2, where c = Product_{p prime} (1 - (3*p-2)/(p^3)) (A065473). - Amiram Eldar, May 12 2025
Previous Showing 11-14 of 14 results.