cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A370240 The sum of divisors of n that are cubes of squarefree numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 28, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 13 2024

Keywords

Comments

First differs from A366904 at n = 32, and from A113061 at n = 64.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= 2, 1, 1 + p^3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= 2, 1, 1 + f[i,1]^3));}

Formula

Multiplicative with a(p^e) = 1 for e <= 2, and a(p^e) = 1 + p^3 for e >= 3.
Dirichlet g.f.: zeta(s)*zeta(3*s-3)/zeta(6*s-6).
Sum_{k=1..n} a(k) ~ c * n^(4/3) + n, where c = 3*zeta(4/3)/(2*Pi^2) = 0.5472769126... .

A342229 Total sum of parts which are cubes in all partitions of n.

Original entry on oeis.org

0, 1, 2, 4, 7, 12, 19, 30, 53, 75, 113, 163, 235, 328, 461, 628, 868, 1163, 1564, 2069, 2743, 3578, 4674, 6036, 7795, 9962, 12728, 16151, 20441, 25714, 32290, 40332, 50292, 62405, 77288, 95339, 117382, 143987, 176298, 215168, 262121, 318385, 386043, 466838, 563577, 678712
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2021

Keywords

Examples

			For n = 4 we have:
--------------------------------
Partitions        Sum of parts
.               which are cubes
--------------------------------
4 ................... 0
3 + 1 ............... 1
2 + 2 ............... 0
2 + 1 + 1 ........... 2
1 + 1 + 1 + 1 ....... 4
--------------------------------
Total ............... 7
So a(4) = 7.
		

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[k^3 x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}]/Product[(1 - x^j), {j, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[DivisorSum[k, # &, IntegerQ[#^(1/3)] &] PartitionsP[n - k], {k, 1, n}], {n, 0, 45}]

Formula

G.f.: Sum_{k>=1} k^3*x^(k^3)/(1 - x^(k^3)) / Product_{j>=1} (1 - x^j).
a(n) = Sum_{k=1..n} A113061(k) * A000041(n-k).

A359943 a(n) = Sum_{d|n, d-1 is cube} d.

Original entry on oeis.org

1, 3, 1, 3, 1, 3, 1, 3, 10, 3, 1, 3, 1, 3, 1, 3, 1, 12, 1, 3, 1, 3, 1, 3, 1, 3, 10, 31, 1, 3, 1, 3, 1, 3, 1, 12, 1, 3, 1, 3, 1, 3, 1, 3, 10, 3, 1, 3, 1, 3, 1, 3, 1, 12, 1, 31, 1, 3, 1, 3, 1, 3, 10, 3, 66, 3, 1, 3, 1, 3, 1, 12, 1, 3, 1, 3, 1, 3, 1, 3, 10, 3, 1, 31, 1, 3
Offset: 1

Views

Author

Seiichi Manyama, Jan 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, IntegerQ[Surd[#-1, 3]] &]; Array[a, 100] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    a(n) = sumdiv(n, d, ispower(d-1, 3)*d);

Formula

G.f.: Sum_{k>=0} (k^3+1) * x^(k^3+1)/(1 - x^(k^3+1)).
Previous Showing 11-13 of 13 results.