A370240 The sum of divisors of n that are cubes of squarefree numbers.
1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 28, 1, 1, 1, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[e <= 2, 1, 1 + p^3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= 2, 1, 1 + f[i,1]^3));}
Formula
Multiplicative with a(p^e) = 1 for e <= 2, and a(p^e) = 1 + p^3 for e >= 3.
Dirichlet g.f.: zeta(s)*zeta(3*s-3)/zeta(6*s-6).
Sum_{k=1..n} a(k) ~ c * n^(4/3) + n, where c = 3*zeta(4/3)/(2*Pi^2) = 0.5472769126... .
Comments