cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A295832 Expansion of Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 12, 20, 33, 50, 74, 114, 175, 257, 375, 555, 814, 1171, 1677, 2406, 3435, 4855, 6825, 9591, 13428, 18667, 25851, 35745, 49250, 67544, 92340, 125966, 171345, 232257, 313945, 423470, 569778, 764465, 1023231, 1366827, 1821756, 2422394, 3214318, 4257088, 5627086, 7422941
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Product[((1 + x^(2 k - 1))/(1 - x^(2 k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 45; CoefficientList[Series[Exp[Sum[x^k ((-1)^(k + 1) + x^k)/(k (1 - x^(2 k))^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.
G.f.: exp(Sum_{k>=1} x^k*((-1)^(k+1) + x^k)/(k*(1 - x^(2*k))^2)).
a(n) ~ exp(3 * (7*Zeta(3))^(1/3) * n^(2/3) / 4 + Pi^2 * n^(1/3) / (24 * (7*Zeta(3))^(1/3)) - Pi^4 / (12096 * Zeta(3)) + 1/12) * (7*Zeta(3))^(7/36) / (A * 2^(23/24) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017

A351036 Lexicographically earliest infinite sequence such that a(i) = a(j) => A000593(i) = A000593(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 17, 5, 18, 10, 19, 3, 20, 11, 21, 6, 22, 12, 23, 2, 24, 13, 25, 7, 26, 14, 25, 4, 27, 15, 28, 8, 29, 16, 30, 1, 31, 17, 32, 9, 33, 17, 34, 5, 35, 18, 36, 10, 33, 19, 37, 3, 38, 20, 39, 11, 40, 21, 41, 6, 42
Offset: 1

Views

Author

Antti Karttunen, Jan 30 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A000593(n), A336158(n)], where A000593(n) is the sum of odd divisors of n, and A336158(n) is the least representative of the prime signature of the odd part of n.
For all i, j:
A003602(i) = A003602(j) => A351040(i) = A351040(j) => a(i) = a(j),
a(i) = a(j) => A113415(i) = A113415(j).

Crossrefs

Cf. also A351037.
Differs from A347374 for the first time at n=103, where a(103) = 48, while A347374(103) = 30.
Differs from A351035 for the first time at n=175, where a(175) = 80, while A351035(175) = 78.
Differs from A351040 for the first time at n=637, where a(637) = 261, while A351040(637) = 272.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    A000593(n) = sigma(A000265(n));
    Aux351036(n) = [A000593(n), A336158(n)];
    v351036 = rgs_transform(vector(up_to, n, Aux351036(n)));
    A351036(n) = v351036[n];

A366798 Lexicographically earliest infinite sequence such that a(i) = a(j) => A366797(i) = A366797(j) for all i, j >= 0, where A366797 is the number of odd divisors permuted by A163511.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 4, 2, 2, 1, 5, 4, 4, 3, 6, 3, 3, 2, 6, 4, 4, 2, 4, 2, 2, 1, 6, 5, 5, 4, 7, 4, 4, 3, 8, 6, 6, 3, 6, 3, 3, 2, 7, 6, 6, 4, 7, 4, 4, 2, 6, 4, 4, 2, 4, 2, 2, 1, 9, 6, 6, 5, 10, 5, 5, 4, 11, 7, 7, 4, 7, 4, 4, 3, 11, 8, 8, 6, 11, 6, 6, 3, 8, 6, 6, 3, 6, 3, 3, 2, 10, 7, 7, 6, 11, 6, 6
Offset: 0

Views

Author

Antti Karttunen, Oct 27 2023

Keywords

Comments

Restricted growth sequence transform of A366797.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A001227(n) = numdiv(n>>valuation(n, 2));
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A366797(n) = A001227(A163511(n));
    v366798 = rgs_transform(vector(1+up_to,n,A366797(n-1)));
    A366798(n) = v366798[1+n];

A366875 a(n) = A349915(A163511(n)), where A349915 is the Dirichlet inverse of the arithmetic mean between the number and sum of the odd divisors of n.

Original entry on oeis.org

1, -1, 0, -3, 0, 1, 3, -4, 0, -1, -1, -1, 0, 10, 4, -5, 0, -2, 1, -8, 0, 5, 1, -5, 0, -2, -10, 14, 0, 12, 5, -7, 0, -4, 2, -24, 0, 32, 8, -27, 0, 1, -5, 26, 0, 18, 5, -19, 0, 6, 2, 11, 0, -20, -14, 20, 0, -2, -12, 18, 0, 16, 7, -8, 0, -8, 4, -72, 0, 112, 24, -108, 0, -8, -32, 162, 0, 108, 27, -125, 0, 3, -1, 35, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 27 2023

Keywords

Crossrefs

Cf. A113415, A163511, A349915, A366878 (rgs-transform).
Cf. also A366873.

Programs

  • PARI
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)));
    memoA349915 = Map();
    A349915(n) = if(1==n,1,my(v); if(mapisdefined(memoA349915,n,&v), v, v = -sumdiv(n,d,if(dA113415(n/d)*A349915(d),0)); mapput(memoA349915,n,v); (v)));
    A366875(n) = A349915(A163511(n));

A366878 Lexicographically earliest infinite sequence such that a(i) = a(j) => A366875(i) = A366875(j) for all i, j >= 0.

Original entry on oeis.org

1, 2, 3, 4, 3, 1, 5, 6, 3, 2, 2, 2, 3, 7, 8, 9, 3, 10, 1, 11, 3, 12, 1, 9, 3, 10, 13, 14, 3, 15, 12, 16, 3, 6, 17, 18, 3, 19, 20, 21, 3, 1, 9, 22, 3, 23, 12, 24, 3, 25, 17, 26, 3, 27, 28, 29, 3, 10, 30, 23, 3, 31, 32, 11, 3, 11, 8, 33, 3, 34, 35, 36, 3, 11, 37, 38, 3, 39, 40, 41, 3, 5, 2, 42, 3, 43, 44, 45, 3, 1, 46, 47, 3
Offset: 0

Views

Author

Antti Karttunen, Oct 27 2023

Keywords

Comments

Restricted growth sequence transform of A366875.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)));
    memoA349915 = Map();
    A349915(n) = if(1==n,1,my(v); if(mapisdefined(memoA349915,n,&v), v, v = -sumdiv(n,d,if(dA113415(n/d)*A349915(d),0)); mapput(memoA349915,n,v); (v)));
    A366875(n) = A349915(A163511(n));
    v366878 = rgs_transform(vector(1+up_to,n,A366875(n-1)));
    A366878(n) = v366878[1+n];

A363902 Expansion of Sum_{k>0} x^(2*k) / (1 - x^(3*k))^2.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 0, 4, 0, 3, 4, 1, 0, 6, 2, 4, 6, 1, 0, 10, 0, 5, 8, 4, 2, 10, 0, 6, 10, 3, 0, 15, 4, 7, 14, 1, 0, 14, 0, 13, 14, 6, 0, 20, 2, 9, 16, 4, 0, 20, 6, 10, 18, 1, 6, 28, 0, 11, 20, 10, 0, 22, 0, 15, 24, 5, 0, 30, 8, 20, 24, 4, 0, 26, 2, 14, 30, 10, 0, 40, 0, 15, 28, 6, 8
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 1 &, Mod[#, 3] == 2 &]/3; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%3==2)*(d+1))/3;

Formula

a(n) = (1/3) * Sum_{d|n, d==2 mod 3} (d+1) = (A001822(n) + A078182(n))/3.
G.f.: Sum_{k>0} k * x^(3*k-1) / (1 - x^(3*k-1)).

A363904 Expansion of Sum_{k>0} x^(3*k) / (1 - x^(4*k))^2.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 3, 1, 0, 2, 5, 0, 0, 1, 5, 0, 3, 3, 6, 1, 0, 0, 8, 2, 0, 5, 8, 0, 4, 0, 11, 1, 0, 5, 11, 0, 0, 3, 11, 3, 5, 6, 12, 1, 2, 0, 14, 0, 0, 8, 17, 2, 6, 0, 15, 5, 0, 8, 19, 0, 0, 4, 17, 0, 7, 11, 18, 1, 0, 0, 24, 5, 5, 11, 20, 0, 8, 0, 21, 3, 0, 11, 23, 3, 0, 5, 25, 6
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 1 &, Mod[#, 4] == 3 &]/4; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%4==3)*(d+1))/4;

Formula

a(n) = (1/4) * Sum_{d|n, d==3 mod 4} (d+1) = (A001842(n) + A050452(n))/4.
G.f.: Sum_{k>0} k * x^(4*k-1) / (1 - x^(4*k-1)).

A366383 Lexicographically earliest infinite sequence such that a(i) = a(j) => A349915(i) = A349915(j) for all i, j >= 1, where A349915 is Dirichlet inverse of arithmetic mean between the number of odd divisors and their sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 1, 8, 9, 4, 10, 11, 12, 4, 13, 2, 14, 4, 15, 16, 17, 4, 2, 18, 2, 4, 19, 13, 20, 4, 21, 12, 22, 4, 23, 24, 25, 4, 26, 27, 28, 4, 29, 30, 31, 4, 7, 1, 32, 4, 33, 1, 25, 4, 34, 21, 35, 4, 36, 37, 29, 4, 38, 19, 39, 4, 40, 41, 42, 4, 43, 38, 11, 4, 38, 44, 45, 4, 29, 32, 46, 4, 34, 47, 48, 4, 49
Offset: 1

Views

Author

Antti Karttunen, Oct 12 2023

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(dA113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)));
    v366383 = rgs_transform(DirInverseCorrect(vector(up_to,n,A113415(n))));
    A366383(n) = v366383[n];

A363969 Expansion of Sum_{k>0} k^2 * x^(2*k-1) / (1 - x^(2*k-1)).

Original entry on oeis.org

1, 1, 5, 1, 10, 5, 17, 1, 30, 10, 37, 5, 50, 17, 78, 1, 82, 30, 101, 10, 142, 37, 145, 5, 179, 50, 226, 17, 226, 78, 257, 1, 330, 82, 350, 30, 362, 101, 454, 10, 442, 142, 485, 37, 632, 145, 577, 5, 642, 179, 762, 50, 730, 226, 830, 17, 946, 226, 901, 78, 962, 257, 1191, 1, 1148, 330, 1157, 82
Offset: 1

Views

Author

Seiichi Manyama, Jun 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, ((# + 1)/2)^2 &, OddQ[#] &]; Array[a, 100] (* Amiram Eldar, Jun 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%2==1)*((d+1)/2)^2);

Formula

a(n) = Sum_{d|n, d==1 mod 2} ((d+1)/2)^2.

A363974 Expansion of Sum_{k>0} x^k / (1 - x^(2*k))^3.

Original entry on oeis.org

1, 1, 4, 1, 7, 4, 11, 1, 19, 7, 22, 4, 29, 11, 46, 1, 46, 19, 56, 7, 80, 22, 79, 4, 98, 29, 124, 11, 121, 46, 137, 1, 178, 46, 188, 19, 191, 56, 242, 7, 232, 80, 254, 22, 337, 79, 301, 4, 336, 98, 400, 29, 379, 124, 434, 11, 494, 121, 466, 46, 497, 137, 623, 1, 596, 178, 596, 46, 712, 188, 667, 19
Offset: 1

Views

Author

Seiichi Manyama, Jun 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[(#+1)/2+1,2] &, OddQ[#] &]; Array[a, 100] (* Amiram Eldar, Jun 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%2==1)*binomial((d+1)/2+1, 2));

Formula

G.f.: Sum_{k>0} k*(k+1)/2 * x^(2*k-1) / (1 - x^(2*k-1)).
a(n) = Sum_{d|n, d==1 mod 2} binomial((d+1)/2+1,2).
Previous Showing 11-20 of 20 results.