cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 112 results. Next

A124758 Product of the parts of the compositions in standard order.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 4, 2, 3, 2, 2, 1, 5, 4, 6, 3, 6, 4, 4, 2, 4, 3, 4, 2, 3, 2, 2, 1, 6, 5, 8, 4, 9, 6, 6, 3, 8, 6, 8, 4, 6, 4, 4, 2, 5, 4, 6, 3, 6, 4, 4, 2, 4, 3, 4, 2, 3, 2, 2, 1, 7, 6, 10, 5, 12, 8, 8, 4, 12, 9, 12, 6, 9, 6, 6, 3, 10, 8, 12, 6, 12, 8, 8, 4, 8, 6, 8, 4, 6, 4, 4, 2, 6, 5, 8, 4, 9, 6
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. - Gus Wiseman, Apr 03 2020

Examples

			Composition number 11 is 2,1,1; 2*1*1 = 2, so a(11) = 2.
The table starts:
  1
  1
  2 1
  3 2 2 1
  4 3 4 2 3 2 2 1
  5 4 6 3 6 4 4 2 4 3 4 2 3 2 2 1
The 146-th composition in standard order is (3,3,2), with product 18, so a(146) = 18. - _Gus Wiseman_, Apr 03 2020
		

Crossrefs

Cf. A066099, A118851, A011782 (row lengths), A001906 (row sums).
The lengths of standard compositions are given by A000120.
The version for prime indices is A003963.
The version for binary indices is A096111.
Taking the sum instead of product gives A070939.
The sum of binary indices is A029931.
The sum of prime indices is A056239.
Taking GCD instead of product gives A326674.
Positions of first appearances are A331579.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Times@@stc[n],{n,0,100}] (* Gus Wiseman, Apr 03 2020 *)

Formula

For a composition b(1),...,b(k), a(n) = Product_{i=1}^k b(i).
a(A164894(n)) = a(A246534(n)) = n!. - Gus Wiseman, Apr 03 2020
a(A233249(n)) = a(A333220(n)) = A003963(n). - Gus Wiseman, Apr 03 2020
From Mikhail Kurkov, Jul 11 2021: (Start)
Some conjectures:
a(2n+1) = a(n) for n >= 0.
a(2n) = (1 + 1/A001511(n))*a(n) = 2*a(n) + a(n - 2^f(n)) - a(2n - 2^f(n)) for n > 0 with a(0)=1 where f(n) = A007814(n).
From the 1st formula for a(2n) we get a(4n+2) = 2*a(n), a(4n) = 2*a(2n) - a(n).
Sum_{k=0..2^n - 1} a(k) = A001519(n+1) for n >= 0.
a((4^n - 1)/3) = A011782(n) for n >= 0.
a(2^m*(2^n - 1)) = m + 1 for n > 0, m >= 0. (End)

A258025 Numbers k such that prime(k+2) - 2*prime(k+1) + prime(k) > 0.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 13, 14, 17, 20, 22, 23, 26, 28, 29, 31, 33, 35, 38, 41, 43, 45, 49, 50, 52, 57, 60, 61, 64, 65, 67, 69, 70, 71, 75, 76, 78, 79, 81, 83, 85, 86, 89, 90, 93, 95, 96, 98, 100, 104, 105, 109, 113, 116, 117, 120, 122, 123, 124, 126, 131, 134
Offset: 1

Views

Author

Clark Kimberling, Jun 02 2015

Keywords

Examples

			5 - 2*3 + 2 = 1, so a(1) = 5.
		

Crossrefs

Partition of the positive integers: A064113, A258025, A258026;
Corresponding partition of the primes: A063535, A063535, A147812.
Adjacent terms differing by 1 correspond to weak prime quartets A054819.
The version for the Kolakoski sequence is A156243.
The version for strict descents is A258026.
The version for weak ascents is A333230.
The version for weak descents is A333231.
First differences are A333212 (if the first term is 0).
Prime gaps are A001223.
Positions of adjacent equal prime gaps are A064113.
Weakly decreasing runs of compositions in standard order are A124765.
A triangle counting compositions by strict ascents is A238343.
Positions of adjacent unequal prime gaps are A333214.
Lengths of maximal anti-runs of prime gaps are A333216.

Programs

  • Mathematica
    u = Table[Sign[Prime[n+2] - 2 Prime[n+1] + Prime[n]], {n, 3, 200}];
    Flatten[Position[u, 0]]   (* A064113 *)
    Flatten[Position[u, 1]]   (* A258025 *)
    Flatten[Position[u, -1]]  (* A258026 *)
    Accumulate[Length/@Split[Differences[Array[Prime,100]],#1>=#2&]]//Most (* Gus Wiseman, Mar 25 2020 *)
    Position[Partition[Prime[Range[150]],3,1],?(#[[3]]-2#[[2]]+#[[1]]> 0&),1,Heads->False]//Flatten (* _Harvey P. Dale, Dec 25 2021 *)
  • PARI
    isok(k) = prime(k+2) - 2*prime(k+1) + prime(k) > 0; \\ Michel Marcus, Jun 03 2015
    
  • PARI
    is(n,p=prime(n))=my(q=nextprime(p+1),r=nextprime(q+1)); p + r > 2*q
    v=List(); n=0; forprime(p=2,1e4, if(is(n++,p), listput(v,n))); v \\ Charles R Greathouse IV, Jun 03 2015
    
  • Python
    from itertools import count, islice
    from sympy import prime, nextprime
    def A258025_gen(startvalue=1): # generator of terms >= startvalue
        c = max(startvalue,1)
        p = prime(c)
        q = nextprime(p)
        r = nextprime(q)
        for k in count(c):
            if p+r>(q<<1):
                yield k
            p, q, r = q, r, nextprime(r)
    A258025_list = list(islice(A258025_gen(),20)) # Chai Wah Wu, Feb 27 2024

A333628 Runs-resistance of the n-th composition in standard order. Number of steps taking run-lengths to reduce the n-th composition in standard order to a singleton.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 1, 0, 2, 1, 3, 2, 2, 3, 1, 0, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 3, 4, 3, 1, 0, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 2, 4, 2, 3, 2, 4, 3, 4, 2, 3, 3, 4, 3, 1, 0, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4, 2, 2, 3, 3, 2, 2, 2, 4, 3, 3, 4
Offset: 1

Views

Author

Gus Wiseman, Mar 31 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			Starting with 13789 and repeatedly applying A333627 gives: 13789 -> 859 -> 110 -> 29 -> 11 -> 6 -> 3 -> 2, corresponding to the compositions: (1,2,2,1,1,2,1,1,2,1) -> (1,2,2,1,2,1,1) -> (1,2,1,1,2) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1) -> (2), so a(13789) = 7.
		

Crossrefs

Number of times applying A333627 to reach a power of 2, starting with n.
Positions of first appearances are A333629.
All of the following pertain to compositions in standard order (A066099):
- The length is A000120.
- The partial sums from the right are A048793.
- The sum is A070939.
- Adjacent equal pairs are counted by A124762.
- Equal runs are counted by A124767.
- Strict compositions are ranked by A233564.
- The partial sums from the left are A272020.
- Constant compositions are ranked by A272919.
- Normal compositions are ranked by A333217.
- Heinz number is A333219.
- Anti-runs are counted by A333381.
- Adjacent unequal pairs are counted by A333382.
- First appearances for specified run-lengths are A333630.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
    Table[runsres[stc[n]],{n,100}]

A351290 Numbers k such that the k-th composition in standard order has all distinct runs.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:      0  ()
   1:      1  (1)
   2:     10  (2)
   3:     11  (1,1)
   4:    100  (3)
   5:    101  (2,1)
   6:    110  (1,2)
   7:    111  (1,1,1)
   8:   1000  (4)
   9:   1001  (3,1)
  10:   1010  (2,2)
  11:   1011  (2,1,1)
  12:   1100  (1,3)
  14:   1110  (1,1,2)
  15:   1111  (1,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A130091.
The version using binary expansions is A175413, complement A351205.
The version for run-lengths instead of runs is A329739.
These compositions are counted by A351013.
The complement is A351291.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions:
- Length is A000120.
- Parts are A066099, reverse A228351.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Split[stc[#]]&]

A246534 a(n) = Sum_{k=1..n} 2^(T(k)-1), where T(k)=k(k+1)/2 = A000217(k).

Original entry on oeis.org

0, 1, 5, 37, 549, 16933, 1065509, 135283237, 34495021605, 17626681066021, 18032025190548005, 36911520172609651237, 151152638972001256489509, 1238091191924352276155613733, 20283647694843594776223406899749, 664634281540152780046679753547072037
Offset: 0

Views

Author

M. F. Hasler, Aug 28 2014

Keywords

Comments

Similar to A181388, this occurs as binary encoding of a straight n-omino lying on the y-axis, when the grid points of the first quadrant (N x N, N={0,1,2,...}) are given the weight 2^k, with k=0, 1,2, 3,4,5, ... filled in by antidiagonals.
Numbers k such that the k-th composition in standard order (row k of A066099) is a reversed initial interval. - Gus Wiseman, Apr 02 2020

Examples

			Label the cells of an infinite square matrix with 0,1,2,3,... along antidiagonals:
  0 1 3 6 10 ...
  2 4 7 ...
  5 8 ...
  9 ...
  ....
Now any subset of these cells can be represented by the sum of 2 raised to the power written in the given cells. In particular, the subset consisting of the first cell in the first 1, 2, 3, ... rows is represented by 2^0, 2^0+2^2, 2^0+2^2+2^5, ...
		

Crossrefs

The version for prime (rather than binary) indices is A002110.
The non-strict generalization is A114994.
The non-reversed version is A164894.
Intersection of A333256 and A333217.
Partial sums of A036442.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[0,1000],normQ[stc[#]]&&Greater@@stc[#]&] (* Gus Wiseman, Apr 02 2020 *)
  • PARI
    t=0;vector(20,n,t+=2^(n*(n+1)/2-1)) \\ yields the vector starting with a[1]=1
    
  • PARI
    t=0;vector(20,n,if(n>1,t+=2^(n*(n-1)/2-1))) \\ yields the vector starting with 0
    
  • Python
    a = 0
    for n in range(1,17): print(a, end =', '); a += 1<<(n-1)*(n+2)//2 # Ya-Ping Lu, Jan 23 2024

A333221 Irregular triangle read by rows where row n lists the set of STC-numbers of permutations of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 7, 10, 9, 12, 16, 11, 13, 14, 32, 17, 24, 18, 20, 15, 64, 21, 22, 26, 128, 19, 25, 28, 34, 40, 33, 48, 256, 23, 27, 29, 30, 36, 65, 96, 42, 35, 49, 56, 512, 37, 38, 41, 44, 50, 52, 1024, 31, 66, 80, 129, 192, 68, 72, 43, 45, 46, 53, 54, 58
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2020

Keywords

Comments

This is a permutation of the nonnegative integers.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. We define the composition with STC-number k to be the k-th composition in standard order.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Reading by columns gives:
  0  1  2  3  4  5  8  7  10  9   16  11  32  17  18  15  64  21  128  19
                 6            12      13      24  20          22       25
                                      14                      26       28
  34  33  256  23  36  65  42  35  512  37  1024  31  66  129  68  43
  40  48       27      96      49       38            80  192  72  45
               29              56       41                         46
               30                       44                         53
                                        50                         54
                                        52                         58
The sequence of terms together with the corresponding compositions begins:
     0: ()           24: (1,4)          27: (1,2,1,1)
     1: (1)          18: (3,2)          29: (1,1,2,1)
     2: (2)          20: (2,3)          30: (1,1,1,2)
     3: (1,1)        15: (1,1,1,1)      36: (3,3)
     4: (3)          64: (7)            65: (6,1)
     5: (2,1)        21: (2,2,1)        96: (1,6)
     6: (1,2)        22: (2,1,2)        42: (2,2,2)
     8: (4)          26: (1,2,2)        35: (4,1,1)
     7: (1,1,1)     128: (8)            49: (1,4,1)
    10: (2,2)        19: (3,1,1)        56: (1,1,4)
     9: (3,1)        25: (1,3,1)       512: (10)
    12: (1,3)        28: (1,1,3)        37: (3,2,1)
    16: (5)          34: (4,2)          38: (3,1,2)
    11: (2,1,1)      40: (2,4)          41: (2,3,1)
    13: (1,2,1)      33: (5,1)          44: (2,1,3)
    14: (1,1,2)      48: (1,5)          50: (1,3,2)
    32: (6)         256: (9)            52: (1,2,3)
    17: (4,1)        23: (2,1,1,1)    1024: (11)
		

Crossrefs

Row lengths are A008480.
Column k = 1 is A233249.
Column k = -1 is A333220.
A related triangle for partitions is A215366.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fbi[q_]:=If[q=={},0,Total[2^q]/2];
    Table[Sort[fbi/@Accumulate/@Permutations[primeMS[n]]],{n,30}]

A374638 Numbers k such that the leaders of anti-runs in the k-th composition in standard order (A066099) are distinct.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 24, 25, 26, 32, 33, 34, 35, 37, 38, 40, 41, 44, 45, 46, 48, 49, 50, 52, 53, 54, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 88, 89, 91, 92, 93, 96, 97, 98, 100, 101, 102, 104
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   4: (3)
   5: (2,1)
   6: (1,2)
   8: (4)
   9: (3,1)
  11: (2,1,1)
  12: (1,3)
  13: (1,2,1)
  16: (5)
  17: (4,1)
  18: (3,2)
  19: (3,1,1)
  20: (2,3)
  22: (2,1,2)
  24: (1,4)
  25: (1,3,1)
  26: (1,2,2)
		

Crossrefs

Positions of distinct (strict) rows in A374515.
Compositions of this type are counted by A374518.
For identical instead of distinct we have A374519, counted by A374517.
The complement is A374639.
Other types of runs (instead of anti-):
- For identical runs we have A374249, counted by A274174.
- For weakly increasing runs we have A374768, counted by A374632.
- For strictly increasing runs we have A374698, counted by A374687.
- For weakly decreasing runs we have A374701, counted by A374743.
- For strictly decreasing runs we have A374767, counted by A374761.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],UnsameQ]&]

A351291 Numbers k such that the k-th composition in standard order does not have all distinct runs.

Original entry on oeis.org

13, 22, 25, 45, 46, 49, 53, 54, 59, 76, 77, 82, 89, 91, 93, 94, 97, 101, 102, 105, 108, 109, 110, 115, 118, 141, 148, 150, 153, 156, 162, 165, 166, 173, 177, 178, 180, 181, 182, 183, 187, 189, 190, 193, 197, 198, 201, 204, 205, 209, 210, 213, 214, 216, 217
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
  13:     1101  (1,2,1)
  22:    10110  (2,1,2)
  25:    11001  (1,3,1)
  45:   101101  (2,1,2,1)
  46:   101110  (2,1,1,2)
  49:   110001  (1,4,1)
  53:   110101  (1,2,2,1)
  54:   110110  (1,2,1,2)
  59:   111011  (1,1,2,1,1)
  76:  1001100  (3,1,3)
  77:  1001101  (3,1,2,1)
  82:  1010010  (2,3,2)
  89:  1011001  (2,1,3,1)
  91:  1011011  (2,1,2,1,1)
  93:  1011101  (2,1,1,2,1)
  94:  1011110  (2,1,1,1,2)
		

Crossrefs

The version for Heinz numbers of partitions is A130092, complement A130091.
Normal multisets with a permutation of this type appear to be A283353.
Partitions w/o permutations of this type are A351204, complement A351203.
The version using binary expansions is A351205, complement A175413.
The complement is A351290, counted by A351013.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has all distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612, counted by A003242.
A345167 ranks alternating compositions, counted by A025047.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions (A066099, reverse A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@Split[stc[#]]&]

A374519 Numbers k such that the leaders of anti-runs in the k-th composition in standard order (A066099) are identical.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 76, 77, 80, 81, 82, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 346th composition in standard order is (2,2,1,2,2), with anti-runs ((2),(2,1,2),(2)), with leaders (2,2,2), so 346 is in the sequence.
		

Crossrefs

Positions of constant rows in A374515.
Compositions of this type are counted by A374517.
The complement is A374520.
For distinct instead of identical leaders we have A374638, counted by A374518.
Other types of runs (instead of anti-):
- For identical runs we have A272919, counted by A000005.
- For weakly increasing runs we have A374633, counted by A374631.
- For strictly increasing runs we have A374685, counted by A374686.
- For weakly decreasing runs we have A374744, counted by A374742.
- For strictly decreasing runs we have A374759, counted by A374760.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs.
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],SameQ@@First/@Split[stc[#],UnsameQ]&]

A333220 The number k such that the k-th composition in standard order consists of the prime indices of n in weakly increasing order.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 7, 10, 12, 16, 14, 32, 24, 20, 15, 64, 26, 128, 28, 40, 48, 256, 30, 36, 96, 42, 56, 512, 52, 1024, 31, 80, 192, 72, 58, 2048, 384, 160, 60, 4096, 104, 8192, 112, 84, 768, 16384, 62, 136, 100, 320, 224, 32768, 106, 144, 120, 640, 1536
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2020

Keywords

Comments

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with the corresponding compositions begins:
      0: ()             128: (8)             2048: (12)
      1: (1)             28: (1,1,3)          384: (1,8)
      2: (2)             40: (2,4)            160: (2,6)
      3: (1,1)           48: (1,5)             60: (1,1,1,3)
      4: (3)            256: (9)             4096: (13)
      6: (1,2)           30: (1,1,1,2)        104: (1,2,4)
      8: (4)             36: (3,3)           8192: (14)
      7: (1,1,1)         96: (1,6)            112: (1,1,5)
     10: (2,2)           42: (2,2,2)           84: (2,2,3)
     12: (1,3)           56: (1,1,4)          768: (1,9)
     16: (5)            512: (10)           16384: (15)
     14: (1,1,2)         52: (1,2,3)           62: (1,1,1,1,2)
     32: (6)           1024: (11)             136: (4,4)
     24: (1,4)           31: (1,1,1,1,1)      100: (1,3,3)
     20: (2,3)           80: (2,5)            320: (2,7)
     15: (1,1,1,1)      192: (1,7)            224: (1,1,6)
     64: (7)             72: (3,4)          32768: (16)
     26: (1,2,2)         58: (1,1,2,2)        106: (1,2,2,2)
		

Crossrefs

The version with prime indices taken in weakly decreasing order is A233249.
A partial inverse is A333219.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fbi[q_]:=If[q=={},0,Total[2^q]/2];
    Table[fbi[Accumulate[Reverse[primeMS[n]]]],{n,100}]

Formula

A000120(a(n)) = A056239(n).
Previous Showing 31-40 of 112 results. Next