cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A335448 Numbers whose prime indices are inseparable.

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 80, 81, 88, 96, 104, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336, 343, 344, 351, 352
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2020

Keywords

Comments

First differs from A212164 in lacking 72.
First differs from A293243 in lacking 72.
No terms are squarefree.
Also Heinz numbers of inseparable partitions (A325535). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are also numbers that can be written as a product of prime numbers, each different from the last but not necessarily different from those prior to the last.
A multiset is inseparable iff its maximal multiplicity is greater than one plus the sum of its remaining multiplicities.

Examples

			The sequence of terms together with their prime indices begins:
   4: {1,1}
   8: {1,1,1}
   9: {2,2}
  16: {1,1,1,1}
  24: {1,1,1,2}
  25: {3,3}
  27: {2,2,2}
  32: {1,1,1,1,1}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  49: {4,4}
  54: {1,2,2,2}
  56: {1,1,1,4}
  64: {1,1,1,1,1,1}
  80: {1,1,1,1,3}
  81: {2,2,2,2}
  88: {1,1,1,5}
  96: {1,1,1,1,1,2}
		

Crossrefs

Complement of A335433.
Separations are counted by A003242 and A335452 and ranked by A333489.
Permutations of prime indices are counted by A008480.
Inseparable partitions are counted by A325535.
Strict permutations of prime indices are counted by A335489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Permutations[primeMS[#]],!MatchQ[#,{_,x_,x_,_}]&]=={}&]

A335452 Number of separations (Carlitz compositions or anti-runs) of the prime indices of n.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 6, 1, 0, 2, 2, 2, 2, 1, 2, 2, 0, 1, 6, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 6, 1, 2, 1, 0, 2, 6, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 2, 6, 1, 0, 0, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2020

Keywords

Comments

The first term that is not a factorial number is a(180) = 12.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A separation (or Carlitz composition) of a multiset is a permutation with no adjacent equal parts.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Feb 03 2021

Examples

			The a(n) separations for n = 2, 6, 30, 180:
  (1)  (12)  (123)  (12123)
       (21)  (132)  (12132)
             (213)  (12312)
             (231)  (12321)
             (312)  (13212)
             (321)  (21213)
                    (21231)
                    (21312)
                    (21321)
                    (23121)
                    (31212)
                    (32121)
		

Crossrefs

Separations are counted by A003242 and ranked by A333489.
Patterns are counted by A000670 and ranked by A333217.
Permutations of prime indices are counted by A008480.
Inseparable partitions are counted by A325535 and ranked by A335448.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],!MatchQ[#,{_,x_,x_,_}]&]],{n,100}]
  • PARI
    F(i, j, r, t) = {sum(k=max(0, i-j), min(min(i,t), (i-j+t)\2), binomial(i, k)*binomial(r-i+1, t+i-j-2*k)*binomial(t-1, k-i+j))}
    count(sig)={my(s=vecsum(sig), r=0, v=[1]); for(p=1, #sig, my(t=sig[p]); v=vector(s-r-t+1, j, sum(i=1, #v, v[i]*F(i-1, j-1, r, t))); r += t); v[1]}
    a(n)={count(factor(n)[,2])} \\ Andrew Howroyd, Feb 03 2021

A333218 Numbers k such that the k-th composition in standard order is a permutation (of an initial interval).

Original entry on oeis.org

0, 1, 5, 6, 37, 38, 41, 44, 50, 52, 549, 550, 553, 556, 562, 564, 581, 582, 593, 600, 610, 616, 649, 652, 657, 664, 708, 712, 786, 788, 802, 808, 836, 840, 16933, 16934, 16937, 16940, 16946, 16948, 16965, 16966, 16977, 16984, 16994, 17000, 17033, 17036, 17041
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2020

Keywords

Comments

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The sequence of terms together with their corresponding compositions begins:
        0: ()             593: (3,2,4,1)      16937: (5,4,2,3,1)
        1: (1)            600: (3,2,1,4)      16940: (5,4,2,1,3)
        5: (2,1)          610: (3,1,4,2)      16946: (5,4,1,3,2)
        6: (1,2)          616: (3,1,2,4)      16948: (5,4,1,2,3)
       37: (3,2,1)        649: (2,4,3,1)      16965: (5,3,4,2,1)
       38: (3,1,2)        652: (2,4,1,3)      16966: (5,3,4,1,2)
       41: (2,3,1)        657: (2,3,4,1)      16977: (5,3,2,4,1)
       44: (2,1,3)        664: (2,3,1,4)      16984: (5,3,2,1,4)
       50: (1,3,2)        708: (2,1,4,3)      16994: (5,3,1,4,2)
       52: (1,2,3)        712: (2,1,3,4)      17000: (5,3,1,2,4)
      549: (4,3,2,1)      786: (1,4,3,2)      17033: (5,2,4,3,1)
      550: (4,3,1,2)      788: (1,4,2,3)      17036: (5,2,4,1,3)
      553: (4,2,3,1)      802: (1,3,4,2)      17041: (5,2,3,4,1)
      556: (4,2,1,3)      808: (1,3,2,4)      17048: (5,2,3,1,4)
      562: (4,1,3,2)      836: (1,2,4,3)      17092: (5,2,1,4,3)
      564: (4,1,2,3)      840: (1,2,3,4)      17096: (5,2,1,3,4)
      581: (3,4,2,1)    16933: (5,4,3,2,1)    17170: (5,1,4,3,2)
      582: (3,4,1,2)    16934: (5,4,3,1,2)    17172: (5,1,4,2,3)
		

Crossrefs

A superset of A164894.
Also a superset of A246534.
Not requiring the parts to be distinct gives A333217.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],#==0||UnsameQ@@stc[#]&&Max@@stc[#]==Length[stc[#]]&]

A344606 Number of alternating permutations of the prime factors of n, counting multiplicity, including twins (x,x).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 1, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 2, 1, 2, 2, 0, 1, 4, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 4, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 28 2021

Keywords

Comments

Differs from A335448 in having a(x^2) = 0 and a(270) = 0.
These are permutations of the prime factors of n, counting multiplicity, with no adjacent triples (..., x, y, z, ...) where x <= y <= z or x >= y >= z.
The version without twins (x,x) is A345164, which is identical to this sequence except when n is the square of a prime.

Examples

			The permutations for n = 2, 6, 30, 180, 210, 300, 420, 720, 840:
  2   23   253   23253   2537   25253   23275   2323252   232527
      32   325   32325   2735   25352   25273   2325232   232725
           352   32523   3275   32525   25372   2523232   252327
           523   35232   3527   35252   27253             252723
                 52323   3725   52325   27352             272325
                         5273   52523   32527             272523
                         5372           32725             325272
                         5723           35272             327252
                         7253           37252             523272
                         7352           52327             527232
                                        52723             723252
                                        57232             725232
                                        72325
                                        72523
For example, there are no alternating permutations of the prime factors of 270 because the only anti-runs are {3,2,3,5,3} and {3,5,3,2,3}, neither of which is alternating, so a(270) = 0.
		

Crossrefs

The version for permutations is A001250.
The extension to anti-run permutations is A335452.
The version for compositions is A344604.
The version for patterns is A344605.
Positions of zeros are A344653 (counted by A344654).
Not including twins (x,x) gives A345164.
A008480 counts permutations of prime indices (strict: A335489, rank: A333221).
A056239 adds up prime indices, row sums of A112798.
A071321 and A071322 are signed sums of prime factors.
A316523 is a signed sum of prime multiplicities.
A316524 and A344616 are signed sums of prime indices.
A325534 counts separable partitions (ranked by A335433).
A325535 counts inseparable partitions (ranked by A335448).
A344740 counts partitions with an alternating permutation or twin (x,x).

Programs

  • Mathematica
    Table[Length[Select[Permutations[Flatten[ConstantArray@@@FactorInteger[n]]],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]],{n,100}]

A233249 a(1)=0; for k >= 1, let prime(k) map to 10...0 with k-1 zeros and let prime(k)*prime(m) map to the concatenation in binary of 2^(k-1) and 2^(m-1). For n >= 2, let the prime power factorization of n be mapped to r(n). a(n) is the term in A114994 which is c-equivalent to r(n) (see there our comment).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 10, 9, 16, 11, 32, 17, 18, 15, 64, 21, 128, 19, 34, 33, 256, 23, 36, 65, 42, 35, 512, 37, 1024, 31, 66, 129, 68, 43, 2048, 257, 130, 39, 4096, 69, 8192, 67, 74, 513, 16384, 47, 136, 73, 258, 131, 32768, 85, 132, 71, 514, 1025, 65536, 75
Offset: 1

Views

Author

Vladimir Shevelev, Dec 06 2013

Keywords

Comments

Let (10...0)_i (i>=0) denote 2^i in binary. Under (10...0)_i^k we understand a concatenation of (10...0)_i k times.
If n=Product_{i=1..m} p_i^t_i is the prime power factorization of n, then in the name r(n)=concatenation{i=1..m} ((10...0_(i-1)^t_i).
Numbers q and s are called c-equivalent if their binary expansions contain the same set of parts of the form 10...0. For example, 14=(1)(1)(10)~(10)(1)(1)=11.
Conversely, if n~n_1 such that n_1 is in A114994 and has c-factorization: n_1 = concatenation{i=m,...,0} ((10...0)i^t_i), one can consider "converse" sequence {s(n)}, where s(n) = Product{i=m..0} p_(i+1)^t_i.
For example, for n=22, n_1=21=((10)^2)(1), and s(22)=3^2*2=18.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary binary expansion of k, prepending 0, taking first differences, and reversing again. Then a(n) is the number k such that the k-th composition in standard order consists of the prime indices of n in weakly decreasing order (the partition with Heinz number n). - Gus Wiseman, Apr 02 2020

Examples

			n=10=2*5 is mapped to (1)(100)~(100)(1). Since 9 is in A114994, then a(10)=9.
From _Gus Wiseman_, Apr 02 2020: (Start)
The sequence together with the corresponding compositions begins:
   0: ()             128: (8)             2048: (12)
   1: (1)             19: (3,1,1)          257: (8,1)
   2: (2)             34: (4,2)            130: (6,2)
   3: (1,1)           33: (5,1)             39: (3,1,1,1)
   4: (3)            256: (9)             4096: (13)
   5: (2,1)           23: (2,1,1,1)         69: (4,2,1)
   8: (4)             36: (3,3)           8192: (14)
   7: (1,1,1)         65: (6,1)             67: (5,1,1)
  10: (2,2)           42: (2,2,2)           74: (3,2,2)
   9: (3,1)           35: (4,1,1)          513: (9,1)
  16: (5)            512: (10)           16384: (15)
  11: (2,1,1)         37: (3,2,1)           47: (2,1,1,1,1)
  32: (6)           1024: (11)             136: (4,4)
  17: (4,1)           31: (1,1,1,1,1)       73: (3,3,1)
  18: (3,2)           66: (5,2)            258: (7,2)
  15: (1,1,1,1)      129: (7,1)            131: (6,1,1)
  64: (7)             68: (4,3)          32768: (16)
  21: (2,2,1)         43: (2,2,1,1)         85: (2,2,2,1)
For example, the Heinz number of (2,2,1) is 18, and the 21st composition in standard order is (2,2,1), so a(18) = 21.
(End)
		

Crossrefs

The sorted version is A114994.
The primorials A002110 map to A246534.
A partial inverse is A333219.
The reversed version is A333220.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[2^Accumulate[primeMS[n]]]/2,{n,100}] (* Gus Wiseman, Apr 02 2020 *)

Formula

A059893(a(n)) = A333220(n). A124767(a(n)) = A001221(n). - Gus Wiseman, Apr 02 2020

Extensions

More terms from Peter J. C. Moses, Dec 07 2013

A333175 If n = Product (p_j^k_j) then a(n) = Sum (a(n/p_j^k_j)), with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 2, 6, 1, 2, 2, 6, 1, 2, 1, 2, 2, 2, 2, 6, 1, 2, 1, 2, 1, 6, 2, 2, 2, 2, 1, 6, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 11 2020

Keywords

Comments

Number of ordered prime factorizations of radical of n.
Number of permutations of the prime indices of n (counting multiplicity) avoiding the patterns (1,2,1) and (2,1,2). These are permutations with all equal parts contiguous. Depends only on sorted prime signature (A118914). - Gus Wiseman, Jun 27 2020

Examples

			From _Gus Wiseman_, Jun 27 2020 (Start)
The a(n) permutations of prime indices for n = 2, 12, 60:
  (1)  (112)  (1123)
       (211)  (1132)
              (2113)
              (2311)
              (3112)
              (3211)
(End)
		

Crossrefs

Dominates A335451.
Permutations of prime indices are A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
(1,2,1)-avoiding permutations of prime indices are A335449.
(2,1,2)-avoiding permutations of prime indices are A335450.
(1,2,1) or (2,1,2)-matching permutations of prime indices are A335460.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.

Programs

  • Maple
    f:= n -> nops(numtheory:-factorset(n))!:
    map(f, [$1..100]); # Robert Israel, Mar 12 2020
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Plus @@ (a[n/#[[1]]^#[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 100}]
    a[1] = 1; a[n_] := a[n] = Sum[If[GCD[n/d, d] == 1 && d < n, Boole[PrimePowerQ[n/d]] a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}]
    Table[PrimeNu[n]!, {n, 1, 100}]

Formula

a(1) = 1; a(n) = Sum_{d|n, d < n, gcd(d, n/d) = 1} A069513(n/d) * a(d).
a(n) = A000142(A001221(n)).

A333220 The number k such that the k-th composition in standard order consists of the prime indices of n in weakly increasing order.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 7, 10, 12, 16, 14, 32, 24, 20, 15, 64, 26, 128, 28, 40, 48, 256, 30, 36, 96, 42, 56, 512, 52, 1024, 31, 80, 192, 72, 58, 2048, 384, 160, 60, 4096, 104, 8192, 112, 84, 768, 16384, 62, 136, 100, 320, 224, 32768, 106, 144, 120, 640, 1536
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2020

Keywords

Comments

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with the corresponding compositions begins:
      0: ()             128: (8)             2048: (12)
      1: (1)             28: (1,1,3)          384: (1,8)
      2: (2)             40: (2,4)            160: (2,6)
      3: (1,1)           48: (1,5)             60: (1,1,1,3)
      4: (3)            256: (9)             4096: (13)
      6: (1,2)           30: (1,1,1,2)        104: (1,2,4)
      8: (4)             36: (3,3)           8192: (14)
      7: (1,1,1)         96: (1,6)            112: (1,1,5)
     10: (2,2)           42: (2,2,2)           84: (2,2,3)
     12: (1,3)           56: (1,1,4)          768: (1,9)
     16: (5)            512: (10)           16384: (15)
     14: (1,1,2)         52: (1,2,3)           62: (1,1,1,1,2)
     32: (6)           1024: (11)             136: (4,4)
     24: (1,4)           31: (1,1,1,1,1)      100: (1,3,3)
     20: (2,3)           80: (2,5)            320: (2,7)
     15: (1,1,1,1)      192: (1,7)            224: (1,1,6)
     64: (7)             72: (3,4)          32768: (16)
     26: (1,2,2)         58: (1,1,2,2)        106: (1,2,2,2)
		

Crossrefs

The version with prime indices taken in weakly decreasing order is A233249.
A partial inverse is A333219.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fbi[q_]:=If[q=={},0,Total[2^q]/2];
    Table[fbi[Accumulate[Reverse[primeMS[n]]]],{n,100}]

Formula

A000120(a(n)) = A056239(n).

A335460 Number of (1,2,1) or (2,1,2)-matching permutations of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 6, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 8, 0, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 6, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2020

Keywords

Comments

Depends only on sorted prime signature (A118914).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) compositions for n = 12, 24, 48, 36, 60, 72:
  (121)  (1121)  (11121)  (1212)  (1213)  (11212)
         (1211)  (11211)  (1221)  (1231)  (11221)
                 (12111)  (2112)  (1312)  (12112)
                          (2121)  (1321)  (12121)
                                  (2131)  (12211)
                                  (3121)  (21112)
                                          (21121)
                                          (21211)
		

Crossrefs

Positions of zeros are A303554.
The (1,2,1)-matching part is A335446.
The (2,1,2)-matching part is A335453.
Replacing "or" with "and" gives A335462.
Permutations of prime indices are counted by A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
STC-numbers of permutations of prime indices are A333221.
(1,2,1) and (2,1,2)-avoiding permutations of prime indices are A333175.
Patterns matched by standard compositions are counted by A335454.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.
Dimensions of downsets of standard compositions are A335465.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x!=y]&]],{n,100}]

A335462 Number of (1,2,1) and (2,1,2)-matching permutations of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) permutations for n = 36, 72, 270, 144, 300:
  (1,2,1,2)  (1,1,2,1,2)  (2,1,2,3,2)  (1,1,1,2,1,2)  (1,2,3,1,3)
  (2,1,2,1)  (1,2,1,1,2)  (2,1,3,2,2)  (1,1,2,1,1,2)  (1,3,1,2,3)
             (1,2,1,2,1)  (2,2,1,3,2)  (1,1,2,1,2,1)  (1,3,1,3,2)
             (2,1,1,2,1)  (2,2,3,1,2)  (1,2,1,1,1,2)  (1,3,2,1,3)
             (2,1,2,1,1)  (2,3,1,2,2)  (1,2,1,1,2,1)  (1,3,2,3,1)
                          (2,3,2,1,2)  (1,2,1,2,1,1)  (2,1,3,1,3)
                                       (2,1,1,1,2,1)  (2,3,1,3,1)
                                       (2,1,1,2,1,1)  (3,1,2,1,3)
                                       (2,1,2,1,1,1)  (3,1,2,3,1)
                                                      (3,1,3,1,2)
                                                      (3,1,3,2,1)
                                                      (3,2,1,3,1)
		

Crossrefs

The avoiding version is A333175.
Replacing "and" with "or" gives A335460.
Positions of nonzero terms are A335463.
Permutations of prime indices are counted by A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
STC-numbers of permutations of prime indices are A333221.
Patterns matched by standard compositions are counted by A335454.
Dimensions of downsets of standard compositions are A335465.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x_,x_,_,y_,_,x_,_}/;x>y]&]],{n,100}]

A335463 Numbers k such that there exists a permutation of the prime indices of k matching both (1,2,1) and (2,1,2).

Original entry on oeis.org

36, 72, 90, 100, 108, 126, 144, 180, 196, 198, 200, 216, 225, 234, 252, 270, 288, 300, 306, 324, 342, 350, 360, 378, 392, 396, 400, 414, 432, 441, 450, 468, 484, 500, 504, 522, 525, 540, 550, 558, 576, 588, 594, 600, 612, 630, 648, 650, 666, 675, 676, 684, 700
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2020

Keywords

Comments

A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with their prime indices begins:
   36: {1,1,2,2}
   72: {1,1,1,2,2}
   90: {1,2,2,3}
  100: {1,1,3,3}
  108: {1,1,2,2,2}
  126: {1,2,2,4}
  144: {1,1,1,1,2,2}
  180: {1,1,2,2,3}
  196: {1,1,4,4}
  198: {1,2,2,5}
  200: {1,1,1,3,3}
  216: {1,1,1,2,2,2}
  225: {2,2,3,3}
  234: {1,2,2,6}
  252: {1,1,2,2,4}
  270: {1,2,2,2,3}
  288: {1,1,1,1,1,2,2}
  300: {1,1,2,3,3}
		

Crossrefs

Replacing "and" with "or" gives A126706.
Positions of nonzero terms in A335462.
Permutations of prime indices are counted by A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
STC-numbers of permutations of prime indices are A333221.
Patterns matched by standard compositions are counted by A335454.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Permutations[primeMS[#]],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x_,x_,_,y_,_,x_,_}/;x>y]&]!={}&]
Showing 1-10 of 24 results. Next