cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A365694 G.f. satisfies A(x) = 1 + x^3*A(x)^2 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 6, 10, 20, 42, 84, 170, 354, 740, 1549, 3269, 6945, 14811, 31711, 68177, 147091, 318313, 690837, 1503351, 3279445, 7169907, 15708485, 34482475, 75830981, 167042763, 368548926, 814341362, 1801867812, 3992172298, 8855912464, 19668236110
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2/(1 + x + Sqrt[1 + x*(-2 + x - 4*x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 16 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k-1, n-3*k)*binomial(n-k+1, k)/(n-k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k-1,n-3*k) * binomial(n-k+1,k) / (n-k+1).
G.f.: A(x) = 2/(1 + x + sqrt(1 + x*(-2 + x - 4*x^2))). - Vaclav Kotesovec, Sep 16 2023

A372413 Coefficient of x^n in the expansion of ( (1-x+x^3) / (1-x) )^n.

Original entry on oeis.org

1, 0, 0, 3, 4, 5, 21, 49, 92, 237, 595, 1331, 3169, 7787, 18487, 44108, 107036, 258349, 622371, 1508239, 3658679, 8869465, 21543005, 52399612, 127497281, 310487855, 756858661, 1846060464, 4505442967, 11003284052, 26887642756, 65735882819, 160795695676
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=1, u=1) = sum(k=0, n\s, binomial(t*n, k)*binomial((u-t+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(n-2*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) / (1-x+x^3) ).

A352900 a(n) is the number of different ways to partition the set of vertices of a convex n-gon into intersecting polygons.

Original entry on oeis.org

0, 0, 0, 7, 28, 79, 460, 2486, 11209, 59787, 361777, 2167635, 13577211, 91919186, 650059294, 4761980740, 36508824672, 292116858616, 2424047807182, 20847409357919, 185754041370693, 1711253802075941, 16272637412753211, 159561718074359537, 1611599794862761838, 16747401536440092104
Offset: 3

Views

Author

Janaka Rodrigo, Apr 07 2022

Keywords

Examples

			For n=6, there are a(6) = 7 intersecting partitions of the convex hexagon. On vertices 1..6, they are the following pairs of triangles:
  {1,3,4}, {5,6,2}
  {4,5,1}, {2,3,6}
  {3,4,6}, {1,2,5}
  {2,3,5}, {1,4,6}
  {1,2,4}, {5,6,3}
  {1,6,3}, {5,4,2}
  {1,3,5}, {2,4,6}
		

Crossrefs

Programs

  • PARI
    T2(n,k) = if (n<3, 0, if (k==1, 1, k*T2(n-1,k) + binomial(n-1,2)*T2(n-3,k-1))); \\ A059022
    a5(n) = if (n<3, n==0, sum(k=1, n\3, T2(n,k))); \\ A006505
    a7(n) = sum(k=ceil((n+3)/2), n, (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)) ); \\ A114997
    a(n) =  a5(n) - a7(n); \\ Michel Marcus, Apr 09 2022

Formula

a(n) = A006505(n) - A114997(n).
a(n) = Sum_{k=2..floor(n/3)} (T(n,k) - C(n+1,k)*C(n-2k-1,k-1)/(n+1)); n > 5, where T(n,k) = k*T(n-1,k) + C(n-1,2)*T(n-3,k-1); n > 5 and 1 < k <= floor(n/3), T(n,k) = 1 when k = 1.
T(n,k) = A059022(n,k) is the number of different ways to partition the set of vertices of a convex n-gon into k polygons.

Extensions

More terms from Michel Marcus, Apr 09 2022
Previous Showing 11-13 of 13 results.