cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A084691 10000 times the n-th zero of the BesselJ function of zero order, rounded.

Original entry on oeis.org

24048, 55201, 86537, 117915, 149309, 180711, 212116, 243525, 274935, 306346, 337758, 369171, 400584, 431998, 463412, 494826, 526241, 557655, 589070, 620485
Offset: 1

Views

Author

Zak Seidov, Jul 01 2003

Keywords

Examples

			24048 represents A115368. 55201 represents 5.52007811...
		

Programs

  • Mathematica
    Round[10000 BesselJZero[0, Range[20]]]

A175838 Let rho(n) be the first positive root of Bessel function J_n(x). This sequence is decimal expansion of derivative rho'(0)=1.54288974...

Original entry on oeis.org

1, 5, 4, 2, 8, 8, 9, 7, 4, 2, 5, 9, 9, 3, 1, 3, 6, 8, 8, 0, 7, 0, 3, 2, 1, 4, 2, 1, 4, 7, 1, 4, 3, 5, 5, 6, 1, 6, 9, 8, 4, 6, 0, 7, 8, 7, 3, 5, 0, 1, 9, 7, 5, 8, 9, 3, 5, 2, 5, 2, 9, 4, 4, 1, 0, 2, 6, 8, 2, 5, 6, 4, 6, 9, 7, 2, 9, 1, 1, 2, 6, 0, 5, 0, 2, 3, 8, 2, 7, 4, 6, 7, 3, 8, 1, 0, 4, 7, 5, 6, 6, 1, 5, 4, 6
Offset: 1

Views

Author

Vladimir Reshetnikov, Sep 19 2010

Keywords

Crossrefs

Cf. A115368. - R. J. Mathar, Sep 22 2010

Programs

  • Maple
    From R. J. Mathar, Sep 22 2010: (Start)
    Digits := 120 : Jnudnu := proc(nu,z,kmax) -add( (-1)^k*Psi(nu+k+1)/GAMMA(nu+k+1)*(z/2)^(2*k+nu)/k! , k=0..kmax) ; evalf(%) ; end proc:
    Jprime := diff(BesselJ(0,x),x) ; z := evalf(BesselJZeros(0,1)) ; denomin := subs(x=z,Jprime) ;
    for kmax from 30 to 70 by 10 do numerat := Jnudnu(0,z,kmax) ; c := evalf(-numerat/denomin) ; print(c) ; end do: # Abramowitz-Stegun 9.1.64
    (End)
  • Mathematica
    N[(Pi BesselY[0,BesselJZero[0,1]])/(2 BesselJ[1,BesselJZero[0,1]]),200]
  • PARI
    besseljzero'(0) \\ Charles R Greathouse IV, Oct 23 2023

A280868 Decimal expansion of the second zero of the Bessel function J_0(z).

Original entry on oeis.org

5, 5, 2, 0, 0, 7, 8, 1, 1, 0, 2, 8, 6, 3, 1, 0, 6, 4, 9, 5, 9, 6, 6, 0, 4, 1, 1, 2, 8, 1, 3, 0, 2, 7, 4, 2, 5, 2, 2, 1, 8, 6, 5, 4, 7, 8, 7, 8, 2, 9, 0, 9, 8, 5, 3, 7, 5, 7, 5, 5, 2, 0, 3, 8, 1, 4, 4, 2, 9, 0, 8, 2, 9, 1, 9, 3, 7, 2, 5, 4, 4, 3, 0, 9, 3, 6, 1, 0, 4, 9, 1, 3, 9, 9, 5, 4, 3, 4, 8, 3
Offset: 1

Views

Author

Thomas König, Jan 28 2017

Keywords

Comments

Calculated with Maple 16.

Examples

			5.5200781102863106495...
		

Crossrefs

Cf. A115368.

Programs

  • Maple
    Digits:=101; evalf(BesselJZeros(0,2));
  • Mathematica
    RealDigits[BesselJZero[0, 2], 10, 100][[1]] (* Amiram Eldar, May 18 2021 *)
  • PARI
    solve(x=5, 6, besselj(0,x)) \\ Michel Marcus, Jan 28 2017
    
  • PARI
    besseljzero(0,2) \\ Charles R Greathouse IV, Aug 09 2022

A298595 G.f.: Sum_{n>=0} a(n)*x^(2*n)/((2*n)!)^2 = 1/BesselJ(0,x).

Original entry on oeis.org

1, 1, 27, 4275, 2326275, 3260434275, 9824561849025, 56272951734424425, 560476093710119461875, 9074718916938795106861875, 226586114542199918676706160625, 8362768986063791790897266120885625, 440616849129306857329147873116900455625, 32189976281042425371050387695609814928515625
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2018

Keywords

Examples

			1/BesselJ(0,x) = 1 + x^2/(2!)^2 + 27*x^4/(4!)^2 + 4275*x^6/(6!)^2 + 2326275*x^8/(8!)^2 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 13; Table[(CoefficientList[Series[1/BesselJ[0, x], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!^2)[[n]], {n, 1, 2 nmax + 1, 2}]
    nmax = 13; Table[(CoefficientList[Series[1/Hypergeometric0F1[1, -x^2/4], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!^2)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = ((2*n)!)^2 * [x^(2*n)] 1/BesselJ(0,x).
a(n) ~ c * Pi * 2^(4*n+3) * n^(4*n+1) / (exp(4*n) * r^(2*n+1)), where r = BesselJZero(0, 1) = A115368 = 2.40482555769... and c = 1 / BesselJ(1, r) = 1.9262348469772531439976485375138638... - Vaclav Kotesovec, May 04 2024
Previous Showing 21-24 of 24 results.