A115447
Numbers whose square is the concatenation of two numbers k and k-9.
Original entry on oeis.org
71, 7235, 9701, 798981, 997001, 35324118, 64675883, 99970001, 3297392379, 6702607622, 7890726434, 8812181189, 9999700001, 897807218979, 917811219179, 979998999801, 999997000001, 46193210013657, 49751928874867
Offset: 1
638370_638361 = 798981^2.
Cf.
A030467,
A106497,
A115436,
A115427,
A115438,
A115439,
A115440,
A115441,
A115442,
A115443,
A115444,
A115445,
A115446.
A340231
Numbers of the form m^2-4 and also equal to some k concatenated with k+1.
Original entry on oeis.org
12, 45, 2021, 3132, 1456414565, 3823938240, 6991969920, 120395120396, 426436426437, 902596902597, 74780207478021, 90902209090221, 66713320846671332085, 81142640598114264060, 84822272598482227260, 99002509969900250997, 22443387868362244338786837, 24905771529642490577152965
Offset: 1
a(1) = 12 = 4^2-4 = 2*6.
a(4) = 3132 = 56^2-4 = 54*58.
-
Select[Table[n 10^IntegerLength[n]+n+1,{n,10^6}],IntegerQ[Sqrt[#+4]]&] (* The program generates the first 10 terms of the sequence. *) (* Harvey P. Dale, Dec 27 2022 *)
-
def agen():
m = 4
while True:
tstr = str(m*m-4)
k = int(tstr[:len(tstr)//2])
if tstr == str(k) + str(k+1):
yield(int(tstr))
m += 1
for an in agen(): print(an, end=", ") # Michael S. Branicky, Jan 02 2021
Comments