A110618
Number of partitions of n with no part larger than n/2. Also partitions of n into n/2 or fewer parts.
Original entry on oeis.org
1, 0, 1, 1, 3, 3, 7, 8, 15, 18, 30, 37, 58, 71, 105, 131, 186, 230, 318, 393, 530, 653, 863, 1060, 1380, 1686, 2164, 2637, 3345, 4057, 5096, 6158, 7665, 9228, 11395, 13671, 16765, 20040, 24418, 29098, 35251, 41869, 50460, 59755, 71669, 84626, 101050
Offset: 0
a(5) = 3 since 5 can be partitioned as 1+1+1+1+1, 2+1+1+1, or 2+2+1; not counted are 5, 4+1, or 3+2.
a(6) = 7 since 6 can be partitioned as 1+1+1+1+1+1, 1+1+1+1+2, 1+1+2+2, 2+2+2, 1+1+1+3, 1+2+3, 3+3; not counted are 1+1+4, 2+4, 1+5, 6.
From _Gus Wiseman_, Oct 30 2018: (Start)
The a(2) = 1 through a(8) = 15 partitions with no part larger than n/2:
(11) (111) (22) (221) (33) (322) (44)
(211) (2111) (222) (331) (332)
(1111) (11111) (321) (2221) (422)
(2211) (3211) (431)
(3111) (22111) (2222)
(21111) (31111) (3221)
(111111) (211111) (3311)
(1111111) (4211)
(22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
The a(2) = 1 through a(8) = 15 partitions into n/2 or fewer parts:
(2) (3) (4) (5) (6) (7) (8)
(22) (32) (33) (43) (44)
(31) (41) (42) (52) (53)
(51) (61) (62)
(222) (322) (71)
(321) (331) (332)
(411) (421) (422)
(511) (431)
(521)
(611)
(2222)
(3221)
(3311)
(4211)
(5111)
The a(6) = 7 integer partitions of 6 with no part larger than n/2 together with a realizing set multipartition of each (the parts of the partition count the appearances of each vertex in the set multipartition):
(33): {{1,2},{1,2},{1,2}}
(321): {{1,2},{1,2},{1,3}}
(3111): {{1,2},{1,3},{1,4}}
(222): {{1,2,3},{1,2,3}}
(2211): {{1,2},{1,2,3,4}}
(21111): {{1,2},{1,3,4,5}}
(111111): {{1,2,3,4,5,6}}
(End)
Cf.
A000070,
A000569,
A025065,
A049311,
A096373,
A116540,
A147878,
A209816,
A283877,
A306005,
A320921.
-
A000070 := proc(n) add( combinat[numbpart](i),i=0..n) ; end proc:
A110618 := proc(n) combinat[numbpart](n) - A000070(floor((n-1)/2)) ; end proc: # R. J. Mathar, Jan 24 2011
-
f[n_, 1] := 1; f[1, k_] := 1; f[n_, k_] := f[n, k] = If[k > n, f[n, k - 1], f[n, k - 1] + f[n - k, k]]; g[n_] := f[n, Floor[n/2]]; g[0] = 1; g[1] = 0; Array[g, 47, 0] (* Robert G. Wilson v, Jan 23 2011 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
multhyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,Min@@Length/@#>1]&];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
Table[Length[Select[strnorm[n],multhyp[#]!={}&]],{n,8}] (* Gus Wiseman, Oct 30 2018 *)
-
a(n) = numbpart(n) - sum(i=0, if (n%2, n\2, n/2-1), numbpart(i)); \\ Michel Marcus, Oct 31 2018
A381992
Number of integer partitions of n that can be partitioned into sets with distinct sums.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 170, 217, 282, 360, 449, 571, 719, 899, 1122, 1391, 1727, 2136, 2616, 3209, 3947, 4800, 5845, 7094, 8602, 10408, 12533, 15062, 18107, 21686, 25956, 30967, 36936, 43897, 52132, 61850, 73157, 86466, 101992, 120195
Offset: 0
There are 6 ways to partition (3,2,2,1) into sets:
{{2},{1,2,3}}
{{1,2},{2,3}}
{{1},{2},{2,3}}
{{2},{2},{1,3}}
{{2},{3},{1,2}}
{{1},{2},{2},{3}}
Of these, 3 have distinct block sums:
{{2},{1,2,3}}
{{1,2},{2,3}}
{{1},{2},{2,3}}
so (3,2,2,1) is counted under a(8).
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(2,1) (3,1) (3,2) (4,2) (4,3) (5,3)
(2,1,1) (4,1) (5,1) (5,2) (6,2)
(2,2,1) (3,2,1) (6,1) (7,1)
(3,1,1) (4,1,1) (3,2,2) (3,3,2)
(2,2,1,1) (3,3,1) (4,2,2)
(4,2,1) (4,3,1)
(5,1,1) (5,2,1)
(3,2,1,1) (6,1,1)
(3,2,2,1)
(3,3,1,1)
(4,2,1,1)
(3,2,1,1,1)
Twice-partitions of this type are counted by
A279785.
Multiset partitions of this type are counted by
A381633, zeros of
A381634.
Normal multiset partitions of this type are counted by
A381718, see
A116539.
These partitions are ranked by
A382075.
For distinct blocks instead of sums we have
A382077, complement
A382078.
For a unique choice we have
A382079.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
A382201 lists MM-numbers of sets with distinct sums.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#], And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]],{n,0,10}]
A381078
Number of multisets that can be obtained by partitioning the prime indices of n into a multiset of sets (set multipartition) and taking their sums.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 5, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 3, 1, 2, 2, 2, 2, 5, 1, 2, 1, 2, 1, 6, 2, 2, 2
Offset: 1
The prime indices of 60 are {1,1,2,3}, with set multipartitions:
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1},{1},{2,3}}
{{1},{2},{1,3}}
{{1},{3},{1,2}}
{{1},{1},{2},{3}}
with block-sums: {1,6}, {3,4}, {1,1,5}, {1,2,4}, {1,3,3}, {1,1,2,3}, which are all different multisets, so a(60) = 6.
For distinct blocks we have
A381441.
For distinct block-sums we have
A381634.
Other multiset partitions of prime indices:
- For strict multiset partitions with distinct sums (
A321469) see
A381637.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A025487,
A066328,
A213242,
A213385,
A213427,
A299201,
A299202,
A300385.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
sqfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sqfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[Union[Sort[hwt/@#]&/@sqfacs[n]]],{n,100}]
A292432
Number of normal multisets that cannot be expressed as the multiset-union of a set of sets.
Original entry on oeis.org
0, 1, 1, 3, 5, 9, 16, 27, 46, 76, 130, 203, 350, 554, 890, 1474, 2285, 3732, 5852, 9297, 14628, 22936, 35903, 55893, 86967, 134585, 207934, 321122, 492634, 757490
Offset: 1
The a(6) = 9 multisets are: {1,1,1,1,1,1}, {1,1,1,1,1,2}, {1,1,1,1,2,2}, {1,1,1,1,2,3}, {1,1,1,2,2,2}, {1,1,2,2,2,2}, {1,2,2,2,2,2}, {1,2,2,2,2,3}, {1,2,3,3,3,3}.
A292444
Number of non-isomorphic finite multisets that cannot be expressed as the multiset-union of a set of sets.
Original entry on oeis.org
0, 1, 1, 2, 3, 5, 6, 9, 12, 17, 22, 30, 39, 50, 65, 83, 105, 131, 167, 207, 257, 317, 391, 478, 585, 708, 864, 1037, 1252, 1498
Offset: 1
Representatives of the a(7) = 6 multisets are: {1,1,1,1,1,1,1}, {1,1,1,1,1,1,2}, {1,1,1,1,1,2,2}, {1,1,1,1,1,2,3}, {1,1,1,1,2,2,2}, {1,1,1,1,2,2,3}.
A381990
Number of integer partitions of n that cannot be partitioned into a set (or multiset) of sets with distinct sums.
Original entry on oeis.org
0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 127, 168, 208, 267, 343, 431, 536, 676, 836, 1045, 1283, 1582, 1949, 2395, 2895, 3549, 4298, 5216, 6281, 7569, 9104, 10953, 13078, 15652, 18627, 22207, 26325, 31278, 37002, 43708, 51597, 60807, 71533, 84031
Offset: 0
The partition y = (3,3,3,2,2,1,1,1,1) has only one multiset partition into a set of sets, namely {{1},{3},{1,2},{1,3},{1,2,3}}, but this does not have distinct sums, so y is counted under a(17).
The a(2) = 1 through a(8) = 9 partitions:
(11) (111) (22) (2111) (33) (2221) (44)
(1111) (11111) (222) (4111) (2222)
(3111) (22111) (5111)
(21111) (31111) (22211)
(111111) (211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
Twice-partitions of this type are counted by
A279785.
Normal multiset partitions of this type are counted by
A381718, see
A116539.
MM-numbers of these multiset partitions (strict blocks with distinct sum) are
A382201.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]==0&]],{n,0,10}]
A381870
Numbers whose prime indices have a unique multiset partition into sets with distinct sums.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 36, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153
Offset: 1
For n = 600 the unique multiset partition is {{1},{1,3},{1,2,3}}. The unique factorization is 2*10*30.
Normal multiset partitions of this type are counted by
A381718, see
A279785.
For constant instead of strict blocks we have
A381991, ones in
A381635.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A321469 counts factorizations with distinct sums of prime indices, ones
A166684.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Select[Range[100],Length[Select[sfacs[#],UnsameQ@@hwt/@#&]]==1&]
A382077
Number of integer partitions of n that can be partitioned into a set of sets.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 171, 217, 283, 361, 449, 574, 721, 900, 1126, 1397, 1731, 2143, 2632, 3223, 3961, 4825, 5874, 7131, 8646, 10452, 12604, 15155, 18216, 21826, 26108, 31169, 37156, 44202, 52492, 62233, 73676, 87089, 102756, 121074
Offset: 0
For y = (3,2,2,2,1,1,1), we have the multiset partition {{1},{2},{1,2},{1,2,3}}, so y is counted under a(12).
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(2,1) (3,1) (3,2) (4,2) (4,3) (5,3)
(2,1,1) (4,1) (5,1) (5,2) (6,2)
(2,2,1) (3,2,1) (6,1) (7,1)
(3,1,1) (4,1,1) (3,2,2) (3,3,2)
(2,2,1,1) (3,3,1) (4,2,2)
(4,2,1) (4,3,1)
(5,1,1) (5,2,1)
(3,2,1,1) (6,1,1)
(3,2,2,1)
(3,3,1,1)
(4,2,1,1)
(3,2,1,1,1)
Factorizations of this type are counted by
A050345.
Normal multiset partitions of this type are counted by
A116539.
The MM-numbers of these multiset partitions are
A302494.
Twice-partitions of this type are counted by
A358914.
For distinct block-sums instead of blocks we have
A381992, ranked by
A382075.
For normal multisets instead of integer partitions we have
A382214, complement
A292432.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
Table[Length[Select[IntegerPartitions[n], Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]>0&]],{n,0,9}]
A383533
Number of integer partitions of n with no ones such that it is possible to choose a family of pairwise disjoint strict integer partitions, one of each part.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 3, 3, 4, 5, 8, 8, 11, 13, 17, 22, 25, 30, 37, 44, 53, 69, 77, 93, 111, 130, 153, 181, 220, 249, 295
Offset: 0
For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is counted under a(6).
The a(2) = 1 through a(10) = 8 partitions:
(2) (3) (4) (5) (6) (7) (8) (9) (10)
(3,2) (3,3) (4,3) (4,4) (5,4) (5,5)
(4,2) (5,2) (5,3) (6,3) (6,4)
(6,2) (7,2) (7,3)
(4,3,2) (8,2)
(4,3,3)
(4,4,2)
(5,3,2)
The number of such families is
A383706.
The complement is counted by
A383711.
A098859 counts partitions with distinct multiplicities, compositions
A242882.
-
pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
Table[Length[Select[IntegerPartitions[n], FreeQ[#,1]&&!pof[#]=={}&]],{n,0,15}]
A381634
Number of multisets that can be obtained by taking the sum of each block of a set multipartition (multiset of sets) of the prime indices of n with distinct block-sums.
Original entry on oeis.org
1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 5, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1
The prime indices of 120 are {1,1,2,3}, with 3 ways:
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1},{2},{1,3}}
with block-sums: {1,6}, {3,4}, {1,2,4}, so a(120) = 3.
The prime indices of 210 are {1,2,3,4}, with 12 ways:
{{1,2,3,4}}
{{1},{2,3,4}}
{{2},{1,3,4}}
{{3},{1,2,4}}
{{4},{1,2,3}}
{{1,2},{3,4}}
{{1,3},{2,4}}
{{1},{2},{3,4}}
{{1},{3},{2,4}}
{{1},{4},{2,3}}
{{2},{3},{1,4}}
{{1},{2},{3},{4}}
with block-sums: {10}, {1,9}, {2,8}, {3,7}, {4,6}, {3,7}, {4,6}, {1,2,7}, {1,3,6}, {1,4,5}, {2,3,5}, {1,2,3,4}, of which 10 are distinct, so a(210) = 10.
A003963 gives product of prime indices.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A116540,
A213242,
A213385,
A213427,
A299202,
A300385,
A317142,
A317143,
A318360.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[Union[Sort[hwt/@#]&/@Select[sfacs[n],UnsameQ@@hwt/@#&]]],{n,100}]
Comments