cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A177475 Number of permutations of order n avoiding the consecutive pattern 131'2.

Original entry on oeis.org

1, 1, 2, 6, 20, 81, 390, 2161, 13678, 96983, 764368, 6630898, 62748250, 643442919, 7104914398, 84062375725, 1060919238874, 14226075039395, 201982580807466, 3027049675655253, 47753241018325280, 790998083929598213, 13726222157931958274, 249018700470309832015, 4714071198944211367704
Offset: 0

Views

Author

Signy Olafsdottir (signy06(AT)ru.is), May 09 2010

Keywords

Comments

To avoid 131'2 means not to have four consecutive letters such that if the third letter is removed, then in the obtained 3 letter word the smallest letter is the first one, and the largest letter is the second one.

Crossrefs

Extensions

Edited and terms a(0),a(10)-a(24) added by Max Alekseyev, Oct 02 2024

A177476 Number of partitions of order n avoiding the consecutive pattern 231'1.

Original entry on oeis.org

1, 1, 2, 6, 20, 83, 402, 2245, 14192, 100650, 792508, 6859260, 64772648, 662630653, 7301841444, 86212535179, 1085834949064, 14530898302390, 205897508769218, 3079580500287978, 48485072137150344, 801518797091165406, 13881049047327393608, 251325130816997882224, 4748240560493406374592
Offset: 0

Views

Author

Signy Olafsdottir (signy06(AT)ru.is), May 09 2010

Keywords

Comments

To avoid 231'1 means not to have four consecutive letters such that if the third letter is removed, then in the obtained 3 letter word the smallest letter is the last one, and the largest letter is the second one.

Crossrefs

Programs

  • Mathematica
    ok[{x_, y_, , z}] := Not[x>z && y>z && y>x]; a[n_] := Length@ Select[ Permutations@ Range@ n, AllTrue[ Partition[#, 4, 1], ok] &]; a /@ Range[0, 9]

Extensions

a(0), a(10)-a(14) from Alois P. Heinz, Mar 10 2020
a(15)-a(16) from Giovanni Resta, Mar 11 2020
a(17)-a(24) from Max Alekseyev, Oct 02 2024

A177480 Number of permutations of order n avoiding the consecutive pattern egfh with e

Original entry on oeis.org

1, 1, 2, 6, 20, 84, 412, 2300, 14676, 104536, 825660, 7168860, 67826340, 695174208, 7671602644, 90700227700, 1143825611348, 15325929083336, 217429459642252, 3256039887793868, 51325896829151684, 849518895902379696, 14730333827970237220, 267028337196612514596, 5051094767395355339476
Offset: 0

Views

Author

Signy Olafsdottir (signy06(AT)ru.is), May 09 2010

Keywords

Comments

To avoid egfh means not to have four consecutive letters such that the first and the second letters are less than the third and the fourth letters.

Crossrefs

Programs

  • Mathematica
    ok[{e_, f_, g_, h_}] := e > g || e > h || f > g || f > h; a[n_] := Length@ Select[ Permutations[Range@n], AllTrue[ Partition[#, 4, 1], ok] &]; a /@ Range[0, 9] (* Giovanni Resta, Mar 11 2020 *)

Extensions

a(0), a(10)-a(14) from Alois P. Heinz, Mar 10 2020
a(15)-a(16) from Giovanni Resta, Mar 11 2020
Edited and a(17)-a(24) added by Max Alekseyev, Oct 01 2024

A177481 Number of permutations of order n avoiding the consecutive pattern efgh with e

Original entry on oeis.org

1, 1, 2, 6, 20, 80, 404, 2368, 15488, 114480, 948992, 8625672, 85223792, 913869056, 10567326528, 130796711016, 1726077013456, 24213357455936, 359694651093152, 5638959807231240, 93052021458248400, 1612444736747193696, 29271726199933801536, 555518182602741687432, 11001032351303890637648
Offset: 0

Views

Author

Signy Olafsdottir (signy06(AT)ru.is), May 09 2010

Keywords

Comments

To avoid efgh means not to have four consecutive letters such that the first and the third letters are less than the second and the fourth letters.

Crossrefs

Programs

  • Mathematica
    ok[{e_,f_,g_,h_}] := e>f || e>h || g>f || g>h; a[n_] := Length@ Select[ Permutations[ Range@ n], AllTrue[ Partition[#, 4, 1], ok] &]; Array[a, 9, 0] (* Giovanni Resta, Mar 11 2020 *)

Extensions

a(0), a(10)-a(16) from Giovanni Resta, Mar 11 2020
Edited and a(17)-a(24) added by Max Alekseyev, Oct 01 2024

A201692 Number of permutations that avoid the consecutive pattern 1423.

Original entry on oeis.org

1, 1, 2, 6, 23, 110, 631, 4218, 32221, 276896, 2643883, 27768955, 318174363, 3949415431, 52794067318, 756137263377, 11551672922816, 187507250145806, 3222662529113641, 58464560588277289, 1116469710152742025, 22386721651323946628, 470259350616967829363
Offset: 0

Views

Author

N. J. A. Sloane, Dec 03 2011

Keywords

Crossrefs

Programs

  • Maple
    c := proc(n,l)
        if n = 1 then
            if l = 0 then
                1;
            else
                0;
            end if;
        elif n= 2 or n = 3 then
            0;
        else
            a := 0 ;
            for k from 1 to (n-2)/2 do
                a := a+procname(n-2*k-1,l-k)*binomial(n-k-2,k) ;
            end do:
            a ;
        end if;
    end proc:
    A201693 := proc(nmax)
        g := 1-t ;
        for n from 2 to nmax do
            for l from 0 to n/2 do
                g := g-c(n,l)*t^n*(-1)^l/n! ;
            end do:
        end do:
        taylor(1/g,t=0,nmax) ;
    end proc:
    nmax := 25 ;
    egf := A201693(nmax) ;
    for n from 0 to nmax-1 do
        printf("%d,",coeftayl(egf,t=0,n)*n!) ;
    end do: # R. J. Mathar, Dec 04 2011
    # second Maple program:
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1, `if`(0 b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 07 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, If[0Jean-François Alcover, Mar 18 2014, after Alois P. Heinz *)

Formula

The reference gives an e.g.f. There is an associated triangle of numbers c_{n,l} that should be added to the OEIS if it is not already present.
a(n) ~ c * d^n * n!, where d = 0.95482605094987833345080179991528996596888600981..., c = 1.1567436851576902067739566662625378535625602... . - Vaclav Kotesovec, Sep 11 2014

Extensions

Definition corrected by N. J. A. Sloane, Mar 15 2015

A201693 Number of permutations that avoid the consecutive pattern 2413.

Original entry on oeis.org

1, 1, 2, 6, 23, 110, 632, 4237, 32465, 279828, 2679950, 28232972, 324470844, 4039771856, 54165468774, 778128659247, 11923645252411, 194131328012012, 3346615262190736, 60897160676005110, 1166446154857250412, 23459656378909613446, 494290181112325561351
Offset: 0

Views

Author

N. J. A. Sloane, Dec 03 2011

Keywords

Crossrefs

Formula

The reference gives a g.f. There is an associated triangle of numbers c_{n,l} that should be added to the OEIS if it is not already present.

Extensions

More terms from Ray Chandler, Dec 06 2011

A231166 Number of permutations of [n] avoiding simultaneously consecutive patterns 1243, 1342, and 1324.

Original entry on oeis.org

1, 1, 2, 6, 21, 91, 467, 2755, 18523, 139740, 1169616, 10763807, 108028386, 1174391384, 13748315494, 172439034531, 2306986699190, 32792999417180, 493559520202535, 7841127918788283, 131127477517244419, 2302491655047553206, 42355105188617740229
Offset: 0

Views

Author

Alois P. Heinz, Nov 04 2013

Keywords

Examples

			a(4) = 24 - 3 = 21 because 1243, 1342, 1324 are avoided.
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, s, t) option remember; `if`(u+o=0, 1,
           add(b(u-j, o+j-1, `if`(t>0, t, 0), `if`(t>0, -j, 0)),
               j=`if`(s>0 and t>0,s+t-1,1)..u)+
           add(b(u+j-1, o-j, `if`(t>0, t, 0), +j),
               j=1..`if`(s>0 and t<0 and -t b(n, 0$3):
    seq(a(n), n=0..25);
  • Mathematica
    b[u_, o_, s_, t_] := b[u, o, s, t] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, If[t > 0, t, 0], If[t > 0, -j, 0]], {j, If[s > 0 && t > 0, s + t - 1, 1], u}] + Sum[b[u + j - 1, o - j, If[t > 0, t, 0], +j], {j, 1, If[s > 0 && t < 0 && -t < s, -t - 1, o]}]];
    a[n_] := b[n, 0, 0, 0];
    a /@ Range[0, 25] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz *)
Previous Showing 11-17 of 17 results.