A177475
Number of permutations of order n avoiding the consecutive pattern 131'2.
Original entry on oeis.org
1, 1, 2, 6, 20, 81, 390, 2161, 13678, 96983, 764368, 6630898, 62748250, 643442919, 7104914398, 84062375725, 1060919238874, 14226075039395, 201982580807466, 3027049675655253, 47753241018325280, 790998083929598213, 13726222157931958274, 249018700470309832015, 4714071198944211367704
Offset: 0
Signy Olafsdottir (signy06(AT)ru.is), May 09 2010
Cf.
A117156,
A177470,
A177471,
A177472,
A177473,
A177476,
A177477,
A177478,
A177479,
A177480,
A177481,
A177482,
A177483,
A177484,
A376694.
Edited and terms a(0),a(10)-a(24) added by
Max Alekseyev, Oct 02 2024
A177476
Number of partitions of order n avoiding the consecutive pattern 231'1.
Original entry on oeis.org
1, 1, 2, 6, 20, 83, 402, 2245, 14192, 100650, 792508, 6859260, 64772648, 662630653, 7301841444, 86212535179, 1085834949064, 14530898302390, 205897508769218, 3079580500287978, 48485072137150344, 801518797091165406, 13881049047327393608, 251325130816997882224, 4748240560493406374592
Offset: 0
Signy Olafsdottir (signy06(AT)ru.is), May 09 2010
Cf.
A117156,
A177470,
A177471,
A177472,
A177473,
A177475,
A177477,
A177478,
A177479,
A177480,
A177481,
A177482,
A177483,
A177484,
A376694.
-
ok[{x_, y_, , z}] := Not[x>z && y>z && y>x]; a[n_] := Length@ Select[ Permutations@ Range@ n, AllTrue[ Partition[#, 4, 1], ok] &]; a /@ Range[0, 9]
A177480
Number of permutations of order n avoiding the consecutive pattern egfh with e
Original entry on oeis.org
1, 1, 2, 6, 20, 84, 412, 2300, 14676, 104536, 825660, 7168860, 67826340, 695174208, 7671602644, 90700227700, 1143825611348, 15325929083336, 217429459642252, 3256039887793868, 51325896829151684, 849518895902379696, 14730333827970237220, 267028337196612514596, 5051094767395355339476
Offset: 0
Signy Olafsdottir (signy06(AT)ru.is), May 09 2010
Cf.
A117156,
A177470,
A177471,
A177472,
A177473,
A177475,
A177476,
A177477,
A177478,
A177479,
A177481,
A177482,
A177483,
A177484,
A376694.
-
ok[{e_, f_, g_, h_}] := e > g || e > h || f > g || f > h; a[n_] := Length@ Select[ Permutations[Range@n], AllTrue[ Partition[#, 4, 1], ok] &]; a /@ Range[0, 9] (* Giovanni Resta, Mar 11 2020 *)
A177481
Number of permutations of order n avoiding the consecutive pattern efgh with e
Original entry on oeis.org
1, 1, 2, 6, 20, 80, 404, 2368, 15488, 114480, 948992, 8625672, 85223792, 913869056, 10567326528, 130796711016, 1726077013456, 24213357455936, 359694651093152, 5638959807231240, 93052021458248400, 1612444736747193696, 29271726199933801536, 555518182602741687432, 11001032351303890637648
Offset: 0
Signy Olafsdottir (signy06(AT)ru.is), May 09 2010
Cf.
A117156,
A177470,
A177471,
A177472,
A177473,
A177475,
A177476,
A177477,
A177478,
A177479,
A177480,
A177482,
A177483,
A177484,
A376694.
-
ok[{e_,f_,g_,h_}] := e>f || e>h || g>f || g>h; a[n_] := Length@ Select[ Permutations[ Range@ n], AllTrue[ Partition[#, 4, 1], ok] &]; Array[a, 9, 0] (* Giovanni Resta, Mar 11 2020 *)
A201692
Number of permutations that avoid the consecutive pattern 1423.
Original entry on oeis.org
1, 1, 2, 6, 23, 110, 631, 4218, 32221, 276896, 2643883, 27768955, 318174363, 3949415431, 52794067318, 756137263377, 11551672922816, 187507250145806, 3222662529113641, 58464560588277289, 1116469710152742025, 22386721651323946628, 470259350616967829363
Offset: 0
-
c := proc(n,l)
if n = 1 then
if l = 0 then
1;
else
0;
end if;
elif n= 2 or n = 3 then
0;
else
a := 0 ;
for k from 1 to (n-2)/2 do
a := a+procname(n-2*k-1,l-k)*binomial(n-k-2,k) ;
end do:
a ;
end if;
end proc:
A201693 := proc(nmax)
g := 1-t ;
for n from 2 to nmax do
for l from 0 to n/2 do
g := g-c(n,l)*t^n*(-1)^l/n! ;
end do:
end do:
taylor(1/g,t=0,nmax) ;
end proc:
nmax := 25 ;
egf := A201693(nmax) ;
for n from 0 to nmax-1 do
printf("%d,",coeftayl(egf,t=0,n)*n!) ;
end do: # R. J. Mathar, Dec 04 2011
# second Maple program:
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1, `if`(0 b(n, 0$2):
seq(a(n), n=0..25); # Alois P. Heinz, Nov 07 2013
-
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, If[0Jean-François Alcover, Mar 18 2014, after Alois P. Heinz *)
A201693
Number of permutations that avoid the consecutive pattern 2413.
Original entry on oeis.org
1, 1, 2, 6, 23, 110, 632, 4237, 32465, 279828, 2679950, 28232972, 324470844, 4039771856, 54165468774, 778128659247, 11923645252411, 194131328012012, 3346615262190736, 60897160676005110, 1166446154857250412, 23459656378909613446, 494290181112325561351
Offset: 0
A231166
Number of permutations of [n] avoiding simultaneously consecutive patterns 1243, 1342, and 1324.
Original entry on oeis.org
1, 1, 2, 6, 21, 91, 467, 2755, 18523, 139740, 1169616, 10763807, 108028386, 1174391384, 13748315494, 172439034531, 2306986699190, 32792999417180, 493559520202535, 7841127918788283, 131127477517244419, 2302491655047553206, 42355105188617740229
Offset: 0
a(4) = 24 - 3 = 21 because 1243, 1342, 1324 are avoided.
-
b:= proc(u, o, s, t) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1, `if`(t>0, t, 0), `if`(t>0, -j, 0)),
j=`if`(s>0 and t>0,s+t-1,1)..u)+
add(b(u+j-1, o-j, `if`(t>0, t, 0), +j),
j=1..`if`(s>0 and t<0 and -t b(n, 0$3):
seq(a(n), n=0..25);
-
b[u_, o_, s_, t_] := b[u, o, s, t] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, If[t > 0, t, 0], If[t > 0, -j, 0]], {j, If[s > 0 && t > 0, s + t - 1, 1], u}] + Sum[b[u + j - 1, o - j, If[t > 0, t, 0], +j], {j, 1, If[s > 0 && t < 0 && -t < s, -t - 1, o]}]];
a[n_] := b[n, 0, 0, 0];
a /@ Range[0, 25] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz *)
Comments