A119233
Numbers k such that the k-th triangular number contains only digits {6,7,9}.
Original entry on oeis.org
3, 11, 36, 36817576, 365512507857054543
Offset: 1
A119235
Numbers k such that the k-th triangular number contains only digits {6,8,9}.
Original entry on oeis.org
3, 11, 36, 371211, 421186108, 1180677745929588
Offset: 1
A119237
Numbers k such that the k-th triangular number contains only digits {7,8,9}.
Original entry on oeis.org
12, 132, 1332, 13332, 133332, 1247307, 1333332, 3949427, 13333332, 133333332, 1333333332, 13333333332, 133333333332, 397189873707, 1333333333332, 13333333333332, 133333333333332, 1333333333333332, 13333333333333332
Offset: 1
A218389
Numbers k such that the k-th triangular number contains only digits {0,2,4}.
Original entry on oeis.org
8944, 2209995667055, 6957333458215, 20001000974971249775
Offset: 1
A218398
Numbers k such that the k-th triangular number contains only digits {0,2,7}.
Original entry on oeis.org
374184, 7385400, 203569507673559, 6663335616682084400
Offset: 1
A218400
Numbers k such that the k-th triangular number contains only digits {0,4,7}.
Original entry on oeis.org
284, 3080, 97680, 9460126854061817544
Offset: 1
A218402
Numbers k such that the k-th triangular number contains only digits {0,7,9}.
Original entry on oeis.org
44, 426096444, 12641976109035254775
Offset: 1
A118706
Triangular numbers whose digits in base 12 are contained in {1,5,7,11}.
Original entry on oeis.org
1, 91, 1891, 3403, 403651, 4388203, 4468555, 41710411, 201553003, 213283531, 410970115, 428264011, 633021571, 642342403, 703181251, 4913725411, 28007409475, 41103462403, 90151709131, 90294438403, 337594212451, 443352832075, 1452321801451, 1483280069635, 4435473488491
Offset: 1
a(4) = 3403 = 1E77 in base 12.
-
L:=[]: pd:={1,5,7,11}: for w to 1 do for n from 1 to 10^6 do t:=n*(n+1)/2; lod:=convert(t,base,12); sod:=convert(lod,set); if sod subset pd then L:=[op(L),[n,t]] fi; od od; L;
-
Select[Accumulate[Range[822000]],SubsetQ[{1,5,7,11},IntegerDigits[ #,12]]&] (* Harvey P. Dale, Oct 18 2019 *)
A118711
Integers k such that the k-th triangular number t_k has all its base-12 digits contained in {1,5,7,11}.
Original entry on oeis.org
1, 13, 61, 82, 898, 2962, 2989, 9133, 20077, 20653, 28669, 29266, 35581, 35842, 37501, 99133, 236674, 286717, 424621, 424957, 821698, 941650, 1704301, 1722370, 2978413, 3328258, 4494466, 10022317, 40392829, 49870141, 50668882, 53933053
Offset: 1
82 = 6X_12 is a term since the triangular number t=82*(82+1)/2 = 3403 = 1E77_12.
-
L:=[]: pd:={1,5,7,11}: for w to 1 do for n from 1 to 10^6 do t:=n*(n+1)/2; lod:=convert(t,base,12); sod:=convert(lod,set); if sod subset pd then L:=[op(L), [n,t]] fi; od od; L;
-
fQ[n_] := Union@ Join[{1, 5, 7, 11}, IntegerDigits[n(n + 1)/2, 12]] == {1, 5, 7, 11}; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]], {n, 10^8}] (* Robert G. Wilson v *)
Comments