cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A357728 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cos( sqrt(k) * (exp(x) - 1) ).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, -1, 0, 1, 0, -2, -3, 0, 1, 0, -3, -6, -6, 0, 1, 0, -4, -9, -10, -5, 0, 1, 0, -5, -12, -12, 10, 33, 0, 1, 0, -6, -15, -12, 45, 190, 266, 0, 1, 0, -7, -18, -10, 100, 465, 1106, 1309, 0, 1, 0, -8, -21, -6, 175, 852, 2394, 4438, 4905, 0, 1, 0, -9, -24, 0, 270, 1345, 4004, 7827, 9978, 11516, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 11 2022

Keywords

Examples

			Square array begins:
  1,  1,   1,   1,   1,   1, ...
  0,  0,   0,   0,   0,   0, ...
  0, -1,  -2,  -3,  -4,  -5, ...
  0, -3,  -6,  -9, -12, -15, ...
  0, -6, -10, -12, -12, -10, ...
  0, -5,  10,  45, 100, 175, ...
		

Crossrefs

Columns k=0-4 give: A000007, A121867, A357725, A357726, A357727.
Main diagonal gives A357729.

Programs

  • PARI
    T(n, k) = sum(j=0, n\2, (-k)^j*stirling(n, 2*j, 2));
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    T(n, k) = round((Bell_poly(n, sqrt(k)*I)+Bell_poly(n, -sqrt(k)*I)))/2;

Formula

T(n,k) = Sum_{j=0..floor(n/2)} (-k)^j * Stirling2(n,2*j).
T(n,k) = ( Bell_n(sqrt(k) * i) + Bell_n(-sqrt(k) * i) )/2, where Bell_n(x) is n-th Bell polynomial and i is the imaginary unit.

A357725 Expansion of e.g.f. cos( sqrt(2) * (exp(x) - 1) ).

Original entry on oeis.org

1, 0, -2, -6, -10, 10, 190, 1106, 4438, 9978, -35250, -666622, -5657370, -35308182, -155215970, -128513870, 7051468022, 105057922906, 1042016038254, 8053738122466, 44608555196294, 48639210067658, -3200193654245442, -60669816166988654, -769281697485061994
Offset: 0

Views

Author

Seiichi Manyama, Oct 10 2022

Keywords

Crossrefs

Column k=2 of A357728.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); apply(round, Vec(serlaplace(cos(sqrt(2)*(exp(x)-1)))))
    
  • PARI
    a(n) = sum(k=0, n\2, (-2)^k*stirling(n, 2*k, 2));
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = round((Bell_poly(n, sqrt(2)*I)+Bell_poly(n, -sqrt(2)*I)))/2;

Formula

a(n) = Sum_{k=0..floor(n/2)} (-2)^k * Stirling2(n,2*k).
a(n) = 1; a(n) = -2 * Sum_{k=0..n-1} binomial(n-1, k) * A357736(k).
a(n) = ( Bell_n(sqrt(2) * i) + Bell_n(-sqrt(2) * i) )/2, where Bell_n(x) is n-th Bell polynomial and i is the imaginary unit.

A121869 Monthly Problem 10791, first expression.

Original entry on oeis.org

-1, 1, 0, -5, -15, 104, 1827, 7893, -207000, -5646249, -47897675, 1479282600, 74711288407, 1396956334921, -21032523700672, -2719998717430365, -104158663871982343, -715846242343471272, 189941380201812700699, 14820744271258596866013, 507768838531742620183176
Offset: 0

Views

Author

N. J. A. Sloane, Sep 05 2006

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> (-1)*Sum([0..n], k-> Stirling2(n,k)) *Sum([0..n], k-> (-1)^k*Stirling2(n,k)) ); # G. C. Greubel, Oct 08 2019
  • Magma
    a:= func< n | (-1)*(&+[StirlingSecond(n,k): k in [0..n]])*(&+[ (-1)^k*StirlingSecond(n,k): k in [0..n]]) >;
    [a(n): n in [0..25]]; // G. C. Greubel, Oct 08 2019
    
  • Maple
    with(combinat): seq(-bell(n)*BellB(n, -1), n = 0..25); # G. C. Greubel, Oct 08 2019
  • Mathematica
    Table[-BellB[n]*BellB[n, -1], {n,0,25}] (* G. C. Greubel, Oct 08 2019 *)
  • PARI
    a(n) = (-1)*sum(k=0,n, stirling(n,k,2))*sum(k=0,n, (-1)^k*stirling(n,k,2));
    vector(25, n, a(n-1)) \\ G. C. Greubel, Oct 08 2019
    
  • Sage
    [ -sum(stirling_number2(n, k) for k in (0..n))*sum((-1)^k* stirling_number2(n,k) for k in (0..n)) for n in (0..25)] # G. C. Greubel, Oct 08 2019
    

Formula

a(n) = A024429(n)^2 - A024430(n)^2.

A121870 Monthly Problem 10791, second expression.

Original entry on oeis.org

1, 1, 2, 9, 61, 554, 6565, 96677, 1716730, 36072181, 881242577, 24674241834, 783024550969, 27896201305769, 1106485798248706, 48517267642373105, 2337333266369553253, 123040664089658462650, 7043260281573138384701, 436533086101058798529933
Offset: 0

Views

Author

N. J. A. Sloane, Sep 05 2006

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> (Sum([0..Int(n/2)], k-> Stirling2(n,2*k)*(-1)^(k)) )^2 + (Sum([0..Int(n/2)], k-> (-1)^k*Stirling2(n,2*k+1)))^2 ); # G. C. Greubel, Oct 08 2019
  • Magma
    C:= ComplexField(); a:= func< n | Round(Abs( (&+[I^k*StirlingSecond(n,k): k in [0..n]])^2 )) >;
    [a(n): n in [0..25]]; // G. C. Greubel, Oct 08 2019
    
  • Maple
    A121870a:= proc(a) local i, t:
    i:=1: t:=0: for i to 100 do t:=t+evalf((i^(a-1))*(I)^i/(i)!): od:
    RETURN(round(abs(t^2))):
    end: a:= A121870a(n);
    # Russell Walsmith, Apr 18 2008
    # Alternate:
    seq(abs(BellB(n,I))^2, n=0..30); # Robert Israel, Oct 15 2017
  • Mathematica
    Table[Abs[BellB[n, I]]^2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2017 *)
  • PARI
    a(n) = abs( (sum(k=0,n, I^k*stirling(n,k,2)))^2 );
    vector(25, n, a(n-1)) \\ G. C. Greubel, Oct 08 2019
    
  • Sage
    [abs( sum(I^k*stirling_number2(n,k) for k in (0..n))^2 ) for n in (0..25)] # G. C. Greubel, Oct 08 2019
    

Formula

a(n) = A121867(n)^2 + A121868(n)^2.
From Gary W. Adamson, Jul 22 2011: (Start)
sqrt(a(n)) = upper left term in M^n as to the modulus of a polar term; M = an infinite square production matrix in which a column of (i, i, i, ...) is appended to the right of Pascal's triangle, as follows (with i = sqrt(-1)):
1, i, 0, 0, 0, ...
1, 1, i, 0, 0, ...
1, 2, 1, i, 0, ...
1, 3, 3, 1, i, ...
... (End)
a(n) = |B_n(i)|^2, where B_n(x) is the n-th Bell polynomial, i = sqrt(-1) is the imaginary unit. - Vladimir Reshetnikov, Oct 15 2017
a(n) ~ (n*exp(-1 + Re(LambertW(i*n)) / Abs(LambertW(i*n))^2) / Abs(LambertW(i*n)))^(2*n) / Abs(1 + LambertW(i*n)), where i is the imaginary unit. - Vaclav Kotesovec, Jul 28 2021
Previous Showing 11-14 of 14 results.