cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A121870 Monthly Problem 10791, second expression.

Original entry on oeis.org

1, 1, 2, 9, 61, 554, 6565, 96677, 1716730, 36072181, 881242577, 24674241834, 783024550969, 27896201305769, 1106485798248706, 48517267642373105, 2337333266369553253, 123040664089658462650, 7043260281573138384701, 436533086101058798529933
Offset: 0

Views

Author

N. J. A. Sloane, Sep 05 2006

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> (Sum([0..Int(n/2)], k-> Stirling2(n,2*k)*(-1)^(k)) )^2 + (Sum([0..Int(n/2)], k-> (-1)^k*Stirling2(n,2*k+1)))^2 ); # G. C. Greubel, Oct 08 2019
  • Magma
    C:= ComplexField(); a:= func< n | Round(Abs( (&+[I^k*StirlingSecond(n,k): k in [0..n]])^2 )) >;
    [a(n): n in [0..25]]; // G. C. Greubel, Oct 08 2019
    
  • Maple
    A121870a:= proc(a) local i, t:
    i:=1: t:=0: for i to 100 do t:=t+evalf((i^(a-1))*(I)^i/(i)!): od:
    RETURN(round(abs(t^2))):
    end: a:= A121870a(n);
    # Russell Walsmith, Apr 18 2008
    # Alternate:
    seq(abs(BellB(n,I))^2, n=0..30); # Robert Israel, Oct 15 2017
  • Mathematica
    Table[Abs[BellB[n, I]]^2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2017 *)
  • PARI
    a(n) = abs( (sum(k=0,n, I^k*stirling(n,k,2)))^2 );
    vector(25, n, a(n-1)) \\ G. C. Greubel, Oct 08 2019
    
  • Sage
    [abs( sum(I^k*stirling_number2(n,k) for k in (0..n))^2 ) for n in (0..25)] # G. C. Greubel, Oct 08 2019
    

Formula

a(n) = A121867(n)^2 + A121868(n)^2.
From Gary W. Adamson, Jul 22 2011: (Start)
sqrt(a(n)) = upper left term in M^n as to the modulus of a polar term; M = an infinite square production matrix in which a column of (i, i, i, ...) is appended to the right of Pascal's triangle, as follows (with i = sqrt(-1)):
1, i, 0, 0, 0, ...
1, 1, i, 0, 0, ...
1, 2, 1, i, 0, ...
1, 3, 3, 1, i, ...
... (End)
a(n) = |B_n(i)|^2, where B_n(x) is the n-th Bell polynomial, i = sqrt(-1) is the imaginary unit. - Vladimir Reshetnikov, Oct 15 2017
a(n) ~ (n*exp(-1 + Re(LambertW(i*n)) / Abs(LambertW(i*n))^2) / Abs(LambertW(i*n)))^(2*n) / Abs(1 + LambertW(i*n)), where i is the imaginary unit. - Vaclav Kotesovec, Jul 28 2021

A009496 Expansion of e.g.f. sin(sinh(x)*exp(x)).

Original entry on oeis.org

0, 1, 2, 3, -4, -83, -658, -4193, -22440, -83975, 120122, 7476315, 112365332, 1294231525, 12752263526, 105731717431, 610305421872, -1116308339087, -115998206237710, -2570453790514893, -43180432963618900, -622814297059769699, -7810135072307898658
Offset: 0

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Sin[Sinh[x] Exp[x]], {x, 0, n}] n!, {n, 0, 20}]
    Table[2^n Im[BellB[n, I/2]], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)

Formula

a(n) = 2^n*Im(B_n(i/2)), where B_n(x) is n-th Bell polynomial, i=sqrt(-1). - Vladimir Reshetnikov, Oct 22 2015

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997

A296545 Expansion of e.g.f. arcsinh(exp(x)-1).

Original entry on oeis.org

0, 1, 1, 0, -5, -15, 46, 735, 2185, -33390, -453479, -364155, 57806200, 681966285, -3289884779, -197798065920, -1815938249585, 33917006295885, 1155429901407646, 5691720408045315, -408736165211351795, -10271257189100959590, 23948813753053818421, 6626731340918542069425, 124356774945741129842320
Offset: 0

Author

Ilya Gutkovskiy, Dec 15 2017

Keywords

Examples

			arcsinh(exp(x)-1) = x/1! + x^2/2! - 5*x^4/4! - 15*x^5/5! + 46*x^6/6! + 735*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    S:= series(arcsinh(exp(x)-1),x,41):
    seq(coeff(S,x,j)*j!,j=0..40); # Robert Israel, Dec 17 2017
  • Mathematica
    nmax = 24; CoefficientList[Series[ArcSinh[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 24; CoefficientList[Series[-Log[1 - Exp[x] + Sqrt[1 + (1 - Exp[x])^2]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: -log(1 - exp(x) + sqrt(1 + (1 - exp(x))^2)).
Previous Showing 11-13 of 13 results.