cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A341689 a(n) is the sum of the 4th power of the first A125907(n) primes.

Original entry on oeis.org

16, 282090779141153551270, 2210712955689035458600206881540015387708550, 48675866046797839528447895106845001955284425583991669795082795118772, 340116502128393540096171523813533871084766138971398067752157768889198596930173282496
Offset: 1

Views

Author

Karl-Heinz Hofmann, Feb 17 2021

Keywords

Crossrefs

Programs

  • Python
    sum = 0
    for n in range(1,10000000000001):
        sum += pow(prime[n],4)
        if sum % n == 0:
            print(n, prime[n], sum, (sum // n))

Extensions

a(4) from Martin Ehrenstein, Feb 27 2021
a(5) from Paul W. Dyson, May 09 2024

A097880 Decimal expansion of the sum for 1 to infinity of fraction sequence with numerator triangular numbers and denominator sum of 4th power of primes.

Original entry on oeis.org

1, 0, 6, 8, 3, 2, 7, 9, 0, 3, 3, 4, 6, 4, 0
Offset: 1

Views

Author

Pierre CAMI, Sep 02 2004

Keywords

Comments

The partial sum over the first 1 million primes is 0.106832790334640030...
The partial sum over the first 3 million primes is 0.1068327903346400495...

Examples

			T4 = 0.1068327...
		

Formula

Equals Sum_{n >=1} A000217(n)/A122102(n). - R. J. Mathar, Dec 07 2014

A118219 Smallest number k>1 such that Sum_{i=1..k} Prime[i]^n divides Product_{i=1..k} Prime[i]^n.

Original entry on oeis.org

3, 30, 17, 248, 515, 49682
Offset: 1

Views

Author

Alexander Adamchuk, Feb 24 2007

Keywords

Comments

a(7)>991430. - Robert G. Wilson v, Mar 02 2007

Examples

			a(1) = 3 because 2 + 3 + 5 = 10 divides 2*3*5 = 30 but 2 + 3 = 5 does not divide 2*3 = 6.
		

Crossrefs

Cf. A051838 = Sum of first n primes divides product of first n primes. Cf. A125314 = Smallest number k>1 such that Sum_{i=1..k} i^n divides Product_{i=1..k} i^n. Cf. A007504, A002110, A024450, A098999, A122102, A122103.

Programs

  • Mathematica
    f[n_] := Block[{k = 2, p = 2, s = 2^n}, While[p = p*Prime@ k; s = s + Prime@ k^n; PowerMod[p, n, s] != 0, k++ ]; k]; Do[ Print@ f@n, {n, 10}] (* Robert G. Wilson v *)

Extensions

a(6) from Robert G. Wilson v, Mar 02 2007

A122124 Numbers n such that 25 divides Sum[ Prime[k]^n, {k,1,n}].

Original entry on oeis.org

3, 5, 7, 11, 15, 19, 23, 25, 27, 31, 35, 39, 43, 45, 47, 51, 55, 59, 63, 65, 67, 71, 75, 79, 83, 85, 87, 91, 95, 99, 103, 105, 107, 111, 115, 119, 123, 125, 127, 131, 135, 139, 143, 145, 147, 151, 155, 159, 163, 165, 167, 171, 175, 179, 183, 185, 187, 191, 195, 199
Offset: 1

Views

Author

Alexander Adamchuk, Aug 21 2006, Sep 18 2006, Sep 21 2006

Keywords

Comments

a(n) up to a(7) = 23 coincides with A007665[n+1] = Tower of Hanoi with 5 pegs. It appears that a(n) includes all A007665[n] = {1, 3, 5, 7, 11, 15, 19, 23, 27, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 271, 287, 303, 319, 335, 351, 383, 415, 447, 479, 511, 543, 575, 607, 639, 671, 703, 735, 767, 799, ...} except A007665[1] = 1.
Primes in this sequence include 5 and all primes of the form 4k+3, A002145[n]. Terms include all numbers of the form 10k+5 (with nonnegative k), A017329[n].

Examples

			There are 25 primes p < 100, p(n) = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}.
a(1) = because 25 divides Sum[p(n)^3,{n,1,25}] = 2^3 + 3^3 + ... + 89^3 + 97^3 = A098999[25] and does not divide Sum[p(n)^1,{n,1,25}] = A007504[25] and Sum[p(n)^2,{n,1,25}] = A024450[25].
The next a(2) = 5 because 25 divides Sum[p(n)^5,{n,1,25}] = A122103[25] and does not divide Sum[p(n)^4,{n,1,25}] = A122102[25].
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300],IntegerQ[Sum[ Prime[k]^#1, {k,1,25}]/25]&]
  • PARI
    for(n=1,100,if(sum(k=1,25,prime(k)^n)%25==0,print1(n,",")));
    print;print("Alternative method not using primes:");
    for(n=1,100,m=(n-1)%6;print1((n-m)*3+(n-m+if(m>1,(m-1)*12-1,m*6-1))/3,",")) \\ K. Spage, Oct 23 2009

A341690 Integer averages of first n primes to the 4th power for some n (A341689(n)/A125907(n)).

Original entry on oeis.org

16, 95591589000729770, 57770815231373815452404527382911050, 15942241394469365582203327807497328235663420076612273764, 89536555153849358635668155008982165719026544119306300984594045157568
Offset: 1

Views

Author

Karl-Heinz Hofmann, Feb 17 2021

Keywords

Crossrefs

Programs

  • Python
    sum = 0
    for n in range(1, 10000000000001):
        sum += pow(prime[n], 4)
        if sum % n == 0:
            print(n, prime[n], sum, (sum // n))

Extensions

a(4) from Martin Ehrenstein, Feb 27 2021
a(5) from Paul W. Dyson, May 09 2024
Previous Showing 11-15 of 15 results.