cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A334740 Number of unordered factorizations of n with 3 different parts > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 4, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 4, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 8, 0, 0, 0, 1
Offset: 1

Views

Author

Jacob Sprittulla, May 09 2020

Keywords

Comments

a(n) depends only on the prime signature of n. E.g. a(12)=a(75), since 12=2^2*3 and 75=5^2*3 share the same prime signature (2,1).

Examples

			a(48) = 3 = #{ (6,4,2), (8,3,2), (4,3,2,2) }.
		

Crossrefs

Cf. A334739 (2 different parts), A072670 (2 parts), A122179 (3 parts), A211159 (2 distinct parts), A122180 (3 distinct parts), A001055, A045778

Programs

  • R
    maxe  <- function(n, d)  { i=0; while( n%%(d^(i+1))==0 )  { i=i+1 }; i }
    uhRec <- function(n, l=1)  {
      uh = 0
      if( n<=0 ) {
        return(0)
      } else if(n==1) {
        return(ifelse(l==0, 1, 0))
      } else if(l<=0) {
        return(0)
      } else if( (n>=2) && (l>=1) )  {
        for(d in 2:n)  {
          m = maxe(n, d)
          if(m>=1)  for(i in 1:m)  for(j in 1:min(i, l))   {
            uhj = uhRec( n/d^i, l-j )
            uh  = uh +  log(d)/log(n) * (-1)^(j+1) * choose(i, j) * uhj
          }
        }
        return(round(uh, 3))
      }
    }
    n=100; l=2; sapply(1:n, uhRec, l)    # A334739
    n=100; l=3; sapply(1:n, uhRec, l)    # A334740

A321379 Number of ways to write n as n = a*b*c*d with 1 < a <= b <= c <= d < n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 4
Offset: 1

Views

Author

Seiichi Manyama, Nov 08 2018

Keywords

Comments

This sequence is different from A101638.
If p is prime, a(p^k) = A026810(k). - Robert Israel, Nov 08 2018

Examples

			16 = 2*2*2*2. So a(16) = 1.
24 = 2*2*2*3. So a(24) = 1.
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    for a from 2 to floor(N^(1/4)) do
      for b from a to floor((N/a)^(1/3)) do
        for c from b to floor((N/a/b)^(1/2)) do
          for d from c to N/(a*b*c) do
            V[a*b*c*d]:= V[a*b*c*d]+1
    od od od od:
    convert(V,list); # Robert Israel, Nov 08 2018
Previous Showing 11-12 of 12 results.