cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A122454 A triangle with shape A000041 defined by sequence A098546 times sequence A036040.

Original entry on oeis.org

1, 2, 1, 3, 9, 1, 4, 24, 18, 24, 1, 5, 50, 100, 100, 150, 50, 1, 6, 90, 225, 150, 300, 1200, 300, 300, 675, 90, 1, 7, 147, 441, 735, 735, 3675, 2450, 3675, 1225, 7350, 3675, 735, 2205, 147, 1, 8, 224, 784, 1568, 980, 1568, 9408, 15680, 11760, 15680, 3920, 29400
Offset: 1

Views

Author

Alford Arnold, Sep 18 2006

Keywords

Comments

Shape sequence for A122454 is A000041 which counts numeric partitions.

Examples

			A098546(n) begins 1 2 1 3 3 1 4 6 6 4 1 ...
A036040(n) begins 1 1 1 1 3 1 1 4 3 6 1 ...
So the triangle begins:
1;
2,   1;
3,   9,   1;
4,  24,  18,  24,   1;
5,  50, 100, 100, 150,   50,    1;
6,  90, 225, 150, 300, 1200,  300,  300,  675,   90,    1;
7, 147, 441, 735, 735, 3675, 2450, 3675, 1225, 7350, 3675, 735, 2205, 147, 1;
		

Crossrefs

Cf. A122455.

Programs

  • Maple
    sortAbrSteg := proc(L1,L2) local i ; if nops(L1) < nops(L2) then RETURN(true) ; elif nops(L2) < nops(L1) then RETURN(false) ; else for i from 1 to nops(L1) do if op(i,L1) < op(i,L2) then RETURN(false) ; fi ; od ; RETURN(true) ; fi ; end: A098546 := proc(n,k) local prts,m ; prts := combinat[partition](n) ; prts := sort(prts, sortAbrSteg) ; if k <= nops(prts) then m := nops(op(k,prts)) ; binomial(n,m) ; else 0 ; fi ; end: M3 := proc(L) local n,k,an,resul; n := add(i,i=L) ; resul := factorial(n) ; for k from 1 to n do an := add(1-min(abs(j-k),1),j=L) ; resul := resul/ (factorial(k))^an /factorial(an) ; od ; end: A036040 := proc(n,k) local prts,m ; prts := combinat[partition](n) ; prts := sort(prts, sortAbrSteg) ; if k <= nops(prts) then M3(op(k,prts)) ; else 0 ; fi ; end: A122454 := proc(n,k) A098546(n,k)*A036040(n,k) ; end: for n from 1 to 10 do for k from 1 to combinat[numbpart](n) do a:=A122454(n,k) ; printf("%d, ",a) ; od; od ; # R. J. Mathar, Jul 17 2007

Formula

A122454(n) = A098546(n) times A036040(n).

Extensions

More terms from R. J. Mathar, Jul 17 2007

A343841 a(n) = Sum{k=0..n} (-1)^(n-k)*binomial(n, k)*Stirling2(n, k).

Original entry on oeis.org

1, 1, -1, -5, 15, 56, -455, -237, 16947, -64220, -529494, 6833608, -8606015, -459331677, 4335744673, 6800310151, -518075832085, 4315086396640, 19931595013738, -812870258798156, 6648395876520816, 46852711038750520, -1752440325584024944, 15485712825845269456
Offset: 0

Views

Author

Peter Luschny, May 04 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add((-1)^(n-k)*binomial(n, k)*Stirling2(n, k), k=0..n):
    seq(a(n), n = 0..24);
  • Mathematica
    a[n_] := Sum[(-1)^(n - k) * Binomial[n, k] * StirlingS2[n, k], {k, 0, n}]; Array[a, 24, 0] (* Amiram Eldar, May 07 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*stirling(n, k, 2)); \\ Michel Marcus, May 07 2021

A271702 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j-1,-n-1)*S2(k,j), S2 the Stirling set numbers A048993, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 13, 1, 4, 10, 26, 71, 1, 5, 15, 45, 140, 456, 1, 6, 21, 71, 246, 887, 3337, 1, 7, 28, 105, 399, 1568, 6405, 27203, 1, 8, 36, 148, 610, 2584, 11334, 51564, 243203, 1, 9, 45, 201, 891, 4035, 18849, 91101, 455712, 2357356
Offset: 0

Views

Author

Peter Luschny, Apr 14 2016

Keywords

Examples

			Triangle starts:
[1]
[1, 1]
[1, 2, 3]
[1, 3, 6, 13]
[1, 4, 10, 26, 71]
[1, 5, 15, 45, 140, 456]
[1, 6, 21, 71, 246, 887, 3337]
[1, 7, 28, 105, 399, 1568, 6405, 27203]
		

Crossrefs

A000012 (col. 0), A000027 (col. 1), A000217 (col. 2), A008778 (col. 3), A122455 (diag. n,n), A134094 (diag. n,n-1).
Cf. A048993.

Programs

  • Maple
    T := (n,k) -> add(Stirling2(k,j)*binomial(-j-1,-n-1)*(-1)^(n-j),j=0..n):
    seq(seq(T(n,k), k=0..n), n=0..9);
  • Mathematica
    Flatten[Table[Sum[(-1)^(n-j) Binomial[-j-1,-n-1] StirlingS2[k,j], {j,0,n}], {n,0,9}, {k,0,n}]]

Formula

T(n,k) = Sum_{j=0..k} C(n,j) * S2(k,j). - Alois P. Heinz, Sep 03 2019

A344053 a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*Stirling2(n, k)*k!.

Original entry on oeis.org

1, 1, 0, -9, -40, 125, 3444, 18571, -241872, -5796711, -24387220, 1132278191, 25132445832, 8850583573, -10681029498972, -214099676807085, 1643397436986464, 176719161389104817, 2976468247699317468, -71662294521163070153, -4638920054290748840520, -55645074852328083377619
Offset: 0

Views

Author

Peter Luschny, May 10 2021

Keywords

Comments

Inverse binomial convolution of the Fubini numbers (A131689).

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n - k) * Binomial[n, k] * StirlingS2[n, k] * k!, {k, 0, n}]; Array[a, 22, 0] (* Amiram Eldar, May 10 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*stirling(n, k, 2)*k!); \\ Michel Marcus, May 10 2021

Formula

a(n) = Sum_{k=0..n} (-1)^k * A219859(n,k). - Alois P. Heinz, Jan 24 2022
a(n) = n! * [x^n] (2 - exp(-x))^n. - Fabian Pereyra, Aug 31 2024
Previous Showing 11-14 of 14 results.