cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A153519 Nonprime numbers k such that 10^k == 10 (mod k) and are not Carmichael numbers.

Original entry on oeis.org

1, 6, 9, 10, 15, 18, 30, 33, 45, 55, 90, 91, 99, 165, 246, 259, 370, 385, 451, 481, 495, 505, 657, 703, 715, 909, 1035, 1045, 1233, 1626, 2035, 2409, 2981, 3333, 3367, 3585, 4005, 4141, 4187, 4521, 4545, 5005, 5461, 6533, 6541, 6565, 7107, 7471, 7777, 8149
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2008

Keywords

Comments

Old name: Members of A121014 which are not Carmichael numbers A002997.

Crossrefs

Programs

  • Mathematica
    Select[Range[8000], !PrimeQ[#] && PowerMod[10, #, #] == Mod[10, #] && !(# > 1 && Divisible[# - 1, CarmichaelLambda[#]]) &] (* Amiram Eldar, Mar 19 2020 *)
  • PARI
    isok(n) = !isprime(n) && !is_A002997(n) && (Mod(10^n, n) == Mod(10, n)); \\ Michel Marcus, Nov 06 2013

Extensions

New name from Michel Marcus, Nov 06 2013

A290543 Composite numbers n such that A290542(n) >= 2.

Original entry on oeis.org

28, 65, 66, 85, 91, 105, 117, 121, 124, 133, 145, 153, 154, 165, 185, 186, 190, 205, 217, 221, 231, 244, 246, 247, 259, 273, 276, 280, 286, 292, 301, 305, 310, 325, 341, 343, 344, 357, 364, 366, 369, 370, 377, 385, 396, 418, 425, 427, 429, 430, 435, 451
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 05 2017

Keywords

Comments

Is a(n) ~ n * log n as n -> infinity?

Crossrefs

Programs

  • Magma
    lst:=[]; for n in [4..451] do if not IsPrime(n) then r:=Floor(Sqrt(n)); for k in [2..r] do if Modexp(k, n, n) eq k then Append(~lst, n); break; end if; end for; end if; end for; lst;
  • Mathematica
    Select[Flatten@ Position[#, k_ /; k >= 2], CompositeQ] &@ Table[SelectFirst[Range[2, Sqrt@ n], PowerMod[#, n , n] == Mod[#, n] &], {n, 451}] (* Michael De Vlieger, Aug 09 2017 *)

A306451 Non-coprime pseudoprimes or primes to base 3: numbers k that are multiples of 3 and are such that k divides 3^k - 3.

Original entry on oeis.org

3, 6, 66, 561, 726, 7107, 8205, 8646, 62745, 100101, 140097, 166521, 237381, 237945, 566805, 656601, 876129, 1053426, 1095186, 1194285, 1234806, 1590513, 1598871, 1938021, 2381259, 2518041, 3426081, 4125441, 5398401, 5454681, 5489121, 5720331, 5961441
Offset: 1

Views

Author

Jianing Song, Feb 17 2019

Keywords

Comments

Union of {3} and (A122780 - {1} - A005935).
Numbers of the form 3*m such that 3^(3*m-1) == 1 (mod m).
The squarefree terms are listed in A306450.

Crossrefs

A258801 is a subsequence.

Programs

  • PARI
    forstep(n=3, 1e7, 3, if(Mod(3, n)^n==3, print1(n, ", ")))

Formula

66 is a term because 66 divides 3^66 - 3 = 3*(3^65 - 1) = 3*(3^5 - 1)*(3^60 + 3^55 + ... + 3^5 + 1) and 66 is divisible by 3.

A306452 Pseudoprimes to base 3 that are not squarefree, including the non-coprime pseudoprimes.

Original entry on oeis.org

121, 726, 3751, 4961, 7381, 11011, 29161, 32791, 142901, 228811, 239701, 341341, 551881, 566401, 595441, 671671, 784201, 856801, 1016521, 1053426, 1237951, 1335961, 1433971, 1804231, 1916761, 2000251, 2254351, 2446741, 2817001, 2983981, 3078361, 3307051, 3562361
Offset: 1

Views

Author

Jianing Song, Feb 17 2019

Keywords

Comments

Numbers k such that 3^k == 3 (mod k) and k is divisible by the square of a Mirimanoff prime (or base-3 Wieferich prime), A014127.
A non-coprime pseudoprime in base b is a number k such that b^k == b (mod k) and that gcd(b, k) > 1, and the non-coprime pseudoprime in base 3 (726, 1053426, 6498426, ...) that are not squarefree are listed in A306450 while the others terms in this sequence (121, 3751, 4961, ...) are listed in A244065. So this sequence is the union of A244065 and A306450.
Intersection of A122780 and A013929.

Examples

			121 is a term because 3^120 == (3^5)^24 == 1 (mod 121) and 121 = 11^2.
Although 3^725 = 243 rather than 1 mod 726, we see that nevertheless 3^726 = 3 mod 726, and since 726 = 2 * 3 * 11^2, 726 is in the sequence. - _Alonso del Arte_, Mar 16 2019
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], PowerMod[3, #, #] == 3 && MoebiusMu[#] == 0 &] (* Alonso del Arte, Mar 16 2019 *)
  • PARI
    forcomposite(n=1, 10^7, if(Mod(3, n)^n==3 && !issquarefree(n), print1(n, ", ")))

A247033 Numbers of the form (3^k - 3)/k.

Original entry on oeis.org

0, 3, 8, 48, 121, 312, 16104, 122640, 7596480, 61171656, 4093181688, 2366564736720, 19924948267224, 12169835294351280, 889585277491970400, 7633882962663652968, 565719454445904325272, 365721616371321130128240, 239498069351503974657030696, 2084811062715550992506283600
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 09 2014

Keywords

Comments

Generated by k: 1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 66, 67, ...
Subsequence of A246445.

Examples

			121 is in this sequence because (3^k - 3)/k = (3^6 - 3)/6 = 121.
		

Crossrefs

Cf. A000040, A005935, A064535 (with form (2^k - 2)/k), A122780 (nonprimes k in a(n)), A246445, A247307 (with form (4^k - 4)/k).
Previous Showing 11-15 of 15 results.