cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A152798 Triangle defined by T(n,k) = Sum_{j=0..k} C(k,j)*T(n-1,j+k) for n>k>0 with T(n,0)=T(n,n)=1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 6, 6, 4, 1, 1, 1, 12, 15, 10, 5, 1, 1, 1, 27, 40, 29, 15, 6, 1, 1, 1, 67, 113, 93, 49, 21, 7, 1, 1, 1, 180, 348, 310, 180, 76, 28, 8, 1, 1, 1, 528, 1148, 1106, 685, 311, 111, 36, 9, 1, 1, 1, 1676, 4045, 4205, 2748, 1322, 497, 155, 45
Offset: 0

Views

Author

Paul D. Hanna, Dec 23 2008

Keywords

Examples

			Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 3, 3, 1, 1;
1, 6, 6, 4, 1, 1;
1, 12, 15, 10, 5, 1, 1;
1, 27, 40, 29, 15, 6, 1, 1;
1, 67, 113, 93, 49, 21, 7, 1, 1;
1, 180, 348, 310, 180, 76, 28, 8, 1, 1;
1, 528, 1148, 1106, 685, 311, 111, 36, 9, 1, 1;
1, 1676, 4045, 4205, 2748, 1322, 497, 155, 45, 10, 1, 1;
1, 5721, 15203, 16912, 11683, 5858, 2323, 750, 209, 55, 11, 1, 1;
1, 20924, 60710, 71858, 52262, 27349, 11230, 3809, 1083, 274, 66, 12, 1, 1; ...
ILLUSTRATE RECURRENCE:
T(6,1) = T(5,1) + T(5,2) = 6 + 6 = 12;
T(7,2) = T(6,2) + 2*T(6,3) + T(6,4) = 6 + 2*4 + 1 = 15;
T(8,3) = T(7,3) + 3*T(7,4) + 3*T(7,5) + T(7,6) = 29 + 3*15 + 3*6 + 1 = 93.
Note that column 1 equals A122889: [1,1,2,3,6,12,27,67,180,528,...]
which is the antidiagonal sums of triangle A122888.
RELATED TRIANGLE A122888 begins:
1;
1, 1;
1, 2, 2, 1;
1, 3, 6, 9, 10, 8, 4, 1;
1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...;
1, 7, 42, 231, 1190, 5810, 27076, 121023, 520626, 2161158,...;
1, 8, 56, 364, 2240, 13188, 74760, 409836, 2179556, 11271436,...; ...
in which the g.f. of row n equals the n-th iteration of (x+x^2).
		

Crossrefs

Cf. A122888; columns: A122889, A152799; variant: A101494.

Programs

  • PARI
    T(n, k)=if(n
    				

A122938 G.f. A(x) satisfies: A(x+x^2) = A(x)^2/(1+x).

Original entry on oeis.org

1, 1, 1, 2, 6, 27, 160, 1189, 10600, 110161, 1306629, 17408293, 257299241, 4177017722, 73872560359, 1413560616317, 29096001945172, 641010535303531, 15049350893772391, 375084409475304164, 9890697492431533299
Offset: 0

Views

Author

Paul D. Hanna, Sep 21 2006

Keywords

Comments

Self-convolution equals A122939. See A122888 for the table of self-compositions of x+x^2.

Examples

			G.f.: A(x) = (1 + x)^(1/2) * (1 + x+x^2)^(1/4) * (1 + x+2x^2+2x^3+x^4)^(1/8) * (1 + x+3x^2+6x^3+9x^4+10x^5+8x^6+4x^7+x^8)^(1/16) *...
		

Crossrefs

Cf. A122939 (A^2), A122940 (log), A122941-A122945; A122888 (table).

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0,n,A=-A+2*sqrt((1+x)*subst(A,x,x+x^2+x*O(x^n))));polcoeff(A,n)}

Formula

G.f.: A(x) = Product_{n>=0} (1 + F_n(x) )^(1/2^(n+1)) where F_0(x)=x, F_{n+1}(x)=F_n(x+x^2); a product that involves the n-th self-compositions of x+x^2.

A122940 L.g.f.: A(x) satisfies: A(x+x^2) = 2*A(x) - log(1+x) with A(0)=0; thus A(x) = log(B(x)), where B(x) is g.f. of A122938.

Original entry on oeis.org

1, 1, 4, 17, 106, 796, 7176, 75057, 894100, 11946906, 176939192, 2876683340, 50931297912, 975391344376, 20090039762944, 442830738561585, 10400937450758286, 259318357362882148, 6839990934297006668
Offset: 1

Views

Author

Paul D. Hanna, Sep 25 2006

Keywords

Comments

a(n) = n * Sum_{k=0..n-1} (-1)^(n-k-1)*A122941(n-k,k)/(n-k).

Examples

			To illustrate A(x+x^2) = 2*A(x) - log(1+x):
A(x) = x + 1*x^2/2 + 4*x^3/3 + 17*x^4/4 + 106*x^5/5 + 796*x^6/6 +...
A(x+x^2) = x + 3*x^2/2 + 7*x^3/3 + 35*x^4/4 + 211*x^5/5 + 1593*x^6/6 +...
		

Crossrefs

Cf. A122938; related tables: A122941, A122888.

Programs

  • PARI
    {a(n)=local(A=x+x*O(x^n)); for(i=0,n,A=-A+subst(A,x,x+x^2)+log(1+x+x*O(x^n)));n*polcoeff(A,n)}

Formula

L.g.f.: A(x) = Sum_{n>=1} a(n)*x^n/n = Sum_{n>=0} log(1 + F_n(x))/2^(n+1) where F_0(x)=x, F_{n+1}(x) = F_n(x+x^2); a sum involving self-compositions of x+x^2 (cf. A122888).

A122941 Rectangular table, read by antidiagonals, where the g.f. of row n is Sum_{i>=0} F_i(x)^n / 2^(i+1), where F_0(x)=x, F_{n+1}(x) = F_n(x+x^2), for n>=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 7, 7, 1, 4, 15, 34, 34, 1, 5, 26, 94, 214, 214, 1, 6, 40, 200, 726, 1652, 1652, 1, 7, 57, 365, 1831, 6645, 15121, 15121, 1, 8, 77, 602, 3865, 19388, 70361, 160110, 160110, 1, 9, 100, 924, 7239, 46481, 233154, 846144, 1925442, 1925442, 1
Offset: 1

Views

Author

Paul D. Hanna, Sep 25 2006

Keywords

Comments

A122940(n)/n = Sum_{m=1..n} (-1)^(m-1)*T(m,n-m+1)/m ; where l.g.f. of A122940, L(x), satisfies: L(x+x^2) = 2*L(x) - log(1+x).

Examples

			Table begins:
1, 1, 2, 7, 34, 214, 1652, 15121, 160110, 1925442, 25924260, ...;
1, 2, 7, 34, 214, 1652, 15121, 160110, 1925442, 25924260, ...;
1, 3, 15, 94, 726, 6645, 70361, 846144, 11392530, 169785124, ...;
1, 4, 26, 200, 1831, 19388, 233154, 3139200, 46784118, ...;
1, 5, 40, 365, 3865, 46481, 625820, 9326720, 152426170, ...;
1, 6, 57, 602, 7239, 97470, 1452610, 23739936, 422171622, ...;
1, 7, 77, 924, 12439, 185388, 3029782, 53879148, 1035760670, ...;
1, 8, 100, 1344, 20026, 327296, 5820360, 111889248, 2312153223, ...;
1, 9, 126, 1875, 30636, 544824, 10473576, 216432783, 4784414985, ...;
1, 10, 155, 2530, 44980, 864712, 17868995, 395007850, 9301284465, ...;
Given that A122940 begins:
[1, 1, 4, 17, 106, 796, 7176, 75057, 894100, 11946906, ...],
demonstrate A122940(n)/n = Sum_{m=1..n} (-1)^(m-1)*T(m,n-m+1)/m
at n=4: A122940(4)/4 = 17/4 = 7/1 - 7/2 + 3/3 - 1/4;
at n=5: A122940(5)/5 = 106/5 = 34/1 - 34/2 + 15/3 - 4/4 + 1/5;
at n=6: A122940(6)/6 = 796/6 = 214/1 - 214/2 + 94/3 - 26/4 + 5/5 - 1/6.
		

Crossrefs

Cf. A122940; rows: A122942, A122943, A122944, A122945; related tables: A122888, A122946, A122948, A122951.

Programs

  • PARI
    /* Get T(n,k) from H(n,), the n-th self-composition of x+x^2: */
    {H(n,p)=local(F=x+x^2, G=x+x*O(x^p));if(n==0,G=x,for(i=1,n,G=subst(F,x,G));G)}
    {T(n,k)=round(polcoeff( sum(i=0,6*n+100,H(i,k+n-1)^n/2^(i+1)),k+n-1))}

Formula

T(n,k) = [x^k] Sum_{i>=0} F_i(x)^n / 2^(i+1) where F_0(x)=x, F_{n+1}(x) = F_n(x+x^2); a sum involving n-th powers of self-compositions of x+x^2 (cf. A122888).

A122891 Column sums of triangle A122890.

Original entry on oeis.org

1, 1, 3, 28, 1625, 3247268, 10649997137454, 113423713055030979289411081, 12864938683278671740537137672878980378983810317967737
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2006

Keywords

Crossrefs

Programs

  • PARI
    {A122890(n, k)=local(F=x+x^2, G=x+x*O(x^k)); if(n<0, 0, for(i=1, n, G=subst(F, x, G)); polcoeff(G, k, x))}
    /* Takes first 2^m terms in column m of A122890 to compute a(m): */
    {for(m=0,8,print1(polcoeff(sum(N=1,2^m,sum(n=0,2^m,A122890(n,N)*x^n)*(1-x)^N+O(x^12)),m),","))}

A122893 Position of largest coefficient of n-th self-composition of (x+x^2) for n>=0.

Original entry on oeis.org

1, 1, 2, 5, 9, 19, 37, 74, 147, 294, 587, 1175, 2349, 4698, 9396, 18791, 37582
Offset: 0

Views

Author

Paul D. Hanna, Sep 19 2006

Keywords

Comments

What is the limit a(n)/2^n = 0.573... ? Originated by Ralf Stephan in A092123 as the position of largest coefficient in the expansion of P(0)=x, P(n+1)=P(n)*[1+P(n)] (equivalent definition).

Crossrefs

Programs

  • Mathematica
    P[n_] := P[n] = If[n < 1, x, P[n - 1]*(P[n - 1] + 1)]; Table[p = Expand[CoefficientList[P[n], x]]; Position[p, Max[p]][[1]][[1]] - 1, {n, 0, 12}] (* Vaclav Kotesovec, Nov 08 2018 *)

Extensions

a(14)-a(15) from Vaclav Kotesovec, Nov 08 2018
a(16) from Vaclav Kotesovec, Nov 09 2018

A122894 Coefficient of x^(2^(n-1)) in the n-th self-composition of (x+x^2) for n>=1.

Original entry on oeis.org

1, 2, 9, 258, 293685, 531124770570, 2439717292075827330588969, 72554628124279239546273779187960042205300343234178
Offset: 1

Views

Author

Paul D. Hanna, Sep 19 2006

Keywords

Comments

Originated by Ralf Stephan in A092123 as the 2^(n-1)th coefficient in the expansion of P(0)=x, P(n+1)=P(n)*[1+P(n)] (equivalent definition). Next term is too large to include.

Examples

			a(1) = 1 = [x^1] (x + x^2).
a(2) = 2 = [x^2] (x + 2*x^2 + 2*x^3 + x^4).
a(3) = 9 = [x^4] (x + 3*x^2 + 6*x^3 + 9*x^4 + 10*x^5 + 8*x^6 + 4*x^7 + x^8).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x+x^2, G=x+x*O(x^(2^(n-1)))); if(n<1, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, 2^(n-1), x)))}

A122939 G.f. A(x) satisfies: A(x+x^2) = A(x)^2/(1+x)^2.

Original entry on oeis.org

1, 2, 3, 6, 17, 70, 390, 2776, 24042, 244864, 2862185, 37715474, 552685976, 8910951840, 156709821779, 2984589501562, 61188398397436, 1343410717573876, 31445844702847347, 781689483100388326, 20564696601659697997
Offset: 0

Views

Author

Paul D. Hanna, Sep 21 2006

Keywords

Comments

Self-convolution of A122938. See A122888 for the table of self-compositions of x+x^2.

Examples

			G.f.: A(x) = (1 + x) * (1 + x+x^2)^(1/2) * (1 + x+2x^2+2x^3+x^4)^(1/4) * (1 + x+3x^2+6x^3+9x^4+10x^5+8x^6+4x^7+x^8)^(1/8) *...
		

Crossrefs

Cf. A122938 (square-root), A122888 (table).

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0,n,A=-A+2*(1+x)*sqrt(subst(A,x,x+x^2+x*O(x^n))));polcoeff(A,n)}

Formula

G.f.: A(x) = Product_{n>=0} (1 + F_n(x) )^(1/2^n) where F_0(x)=x, F_{n+1}(x)=F_n(x+x^2); a product that involves the n-th self-compositions of x+x^2.

A166904 Row sums of triangle A166900.

Original entry on oeis.org

1, 2, 7, 40, 321, 3361, 43667, 679806, 12358885, 257281501, 6039232167, 157879127902, 4550258562799, 143367509714352, 4903128661348411, 180907738215049666, 7163333648262397913, 303006716530386750233
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2009

Keywords

Comments

Triangle A166900 transforms rows into diagonals in the table of coefficients of successive iterations of x+x^2 (cf. A122888).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, M, N, P); M=matrix(n+2, n+2, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, x+x^2+x*O(x^(n+2)))); polcoeff(F, c)); N=matrix(n+1, n+1, r, c, F=x;for(i=1, r, F=subst(F, x, x+x^2+x*O(x^(n+3)))); polcoeff(F, c)); P=matrix(n+1, n+1, r, c, M[r+1, c]); M=(P~*N~^-1); sum(k=1,n+1,M[n+1,k])}

A171792 G.f. A(x) satisfies: A(x) = (x + A(x+x^2))/2 with A(0)=0.

Original entry on oeis.org

1, 1, 2, 7, 34, 214, 1652, 15121, 160110, 1925442, 25924260, 386354366, 6314171932, 112286067892, 2158562109096, 44605949528355, 986049177712850, 23218586050641090, 580198948211652348, 15334750335623526670, 427408226085246086676, 12528910074528593086980
Offset: 1

Views

Author

Paul D. Hanna, Jan 25 2010

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 7*x^4 + 34*x^5 + 214*x^6 +...
A(x+x^2) = x + 2*x^2 + 4*x^3 + 14*x^4 + 68*x^5 + 428*x^6 + ...
		

Crossrefs

Cf. A122888.

Programs

  • Mathematica
    Nest[Append[#1, Sum[Binomial[k, #2 - k] #[[k]], {k, Floor[#2/2], #2 - 1}]] & @@ {#, Length@ # + 1} &, {1}, 19] (* Michael De Vlieger, Dec 06 2018 *)
  • Maxima
    a(n):=if n=1 then 1 else sum(binomial(k,n-k)*a(k),k,floor(n/2),n-1); /* Vladimir Kruchinin, Jun 25 2011 */
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n*(n+1)/2,A=(x+subst(A,x,x+x^2+x*O(x^n)))/2);ceil(polcoeff(A,n))}
    
  • PARI
    {a(n)=if(n==1,1,polcoeff(sum(m=1,n-1,a(m)*(x+x^2+x*O(x^n))^m),n))} \\ Paul D. Hanna, Jan 30 2010
    

Formula

G.f.: A(x) = Sum_{n>=0} G_{n}(x)/2^(n+1) where G_{n}(x) is the n-th iteration of (x+x^2) defined by G_{n}(x) = G_{n-1}(x+x^2) with G_0(x)=x.
a(k) = Sum_{n>=0} A122888(n,k)/2^(n+1).
a(k) is odd iff k is a power of 2: a(2^n) == 1 (mod 2) for n>=0.
Conjecture: a(n) = Sum_{r=ceiling(n/2)..n-1} binomial(r, n-r)*a(r) with a(1) = 1. See [Aspenberg, Perez]. - Michel Marcus, Jun 26 2019
Previous Showing 21-30 of 33 results. Next