A152798 Triangle defined by T(n,k) = Sum_{j=0..k} C(k,j)*T(n-1,j+k) for n>k>0 with T(n,0)=T(n,n)=1, read by rows.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 6, 6, 4, 1, 1, 1, 12, 15, 10, 5, 1, 1, 1, 27, 40, 29, 15, 6, 1, 1, 1, 67, 113, 93, 49, 21, 7, 1, 1, 1, 180, 348, 310, 180, 76, 28, 8, 1, 1, 1, 528, 1148, 1106, 685, 311, 111, 36, 9, 1, 1, 1, 1676, 4045, 4205, 2748, 1322, 497, 155, 45
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 1, 1; 1, 2, 1, 1; 1, 3, 3, 1, 1; 1, 6, 6, 4, 1, 1; 1, 12, 15, 10, 5, 1, 1; 1, 27, 40, 29, 15, 6, 1, 1; 1, 67, 113, 93, 49, 21, 7, 1, 1; 1, 180, 348, 310, 180, 76, 28, 8, 1, 1; 1, 528, 1148, 1106, 685, 311, 111, 36, 9, 1, 1; 1, 1676, 4045, 4205, 2748, 1322, 497, 155, 45, 10, 1, 1; 1, 5721, 15203, 16912, 11683, 5858, 2323, 750, 209, 55, 11, 1, 1; 1, 20924, 60710, 71858, 52262, 27349, 11230, 3809, 1083, 274, 66, 12, 1, 1; ... ILLUSTRATE RECURRENCE: T(6,1) = T(5,1) + T(5,2) = 6 + 6 = 12; T(7,2) = T(6,2) + 2*T(6,3) + T(6,4) = 6 + 2*4 + 1 = 15; T(8,3) = T(7,3) + 3*T(7,4) + 3*T(7,5) + T(7,6) = 29 + 3*15 + 3*6 + 1 = 93. Note that column 1 equals A122889: [1,1,2,3,6,12,27,67,180,528,...] which is the antidiagonal sums of triangle A122888. RELATED TRIANGLE A122888 begins: 1; 1, 1; 1, 2, 2, 1; 1, 3, 6, 9, 10, 8, 4, 1; 1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1; 1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...; 1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...; 1, 7, 42, 231, 1190, 5810, 27076, 121023, 520626, 2161158,...; 1, 8, 56, 364, 2240, 13188, 74760, 409836, 2179556, 11271436,...; ... in which the g.f. of row n equals the n-th iteration of (x+x^2).
Programs
-
PARI
T(n, k)=if(n
Comments