cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A265729 Decimal expansion of 32*Pi.

Original entry on oeis.org

1, 0, 0, 5, 3, 0, 9, 6, 4, 9, 1, 4, 8, 7, 3, 3, 8, 3, 6, 3, 0, 8, 0, 4, 5, 8, 8, 2, 6, 4, 9, 4, 4, 0, 9, 2, 2, 9, 4, 3, 0, 9, 4, 2, 0, 7, 8, 0, 0, 0, 3, 3, 8, 6, 2, 7, 1, 1, 9, 8, 2, 2, 6, 9, 5, 3, 8, 5, 0, 1, 2, 5, 0, 0, 1, 1, 5, 8, 6, 8, 7, 9, 5, 6, 0, 9, 7, 1, 1, 4, 4, 1, 0, 9, 4, 7, 7, 4, 6, 1, 7, 5, 4, 2, 8
Offset: 3

Views

Author

Keywords

Comments

"The integral corresponds to integration over a spherical cone with opening angle Pi/2 and radius 4. However, it is not clear what the integrand physically represents (it resembles computation of a moment of inertia, but that would give a factor (rho*sin(phi))^2 rather than the given rho*cos(phi))."

Examples

			100.53096491487338363080458826494409229430942078000338627119822695385012500...
		

References

  • The Jun 02 1996 comic strip FoxTrot by Bill Amend (Amend 1998, p. 19; Mitchell 2006/2007)

Crossrefs

Programs

  • Mathematica
    RealDigits[32 Pi, 10, 111][[1]] (* or *)
    Integrate[\[Rho] Cos[\[Phi]] \[Rho]^2 Sin[\[Phi]], {\[Rho], 0, 4}, {\[Phi], 0, Pi/4}, {\[Theta], 0, 2 Pi}]
  • PARI
    32*Pi \\ Altug Alkan, Dec 14 2015

Formula

Equals Integral_{theta=0..2*Pi} Integral_{phi=0..Pi/4} Integral_{rho=0..4} (rho*cos(phi))*rho^2*sin(phi) d(rho) d(phi) d(theta).

A359104 Decimal expansion of the area enclosed by Sylvester's Bicorn curve.

Original entry on oeis.org

7, 4, 6, 4, 5, 5, 9, 4, 5, 4, 3, 9, 3, 4, 6, 4, 6, 3, 3, 4, 1, 4, 6, 1, 6, 7, 2, 7, 5, 8, 9, 6, 5, 7, 5, 8, 7, 7, 0, 5, 3, 5, 3, 7, 5, 1, 0, 7, 8, 9, 6, 8, 2, 0, 3, 4, 3, 6, 5, 7, 6, 3, 5, 4, 3, 9, 6, 2, 3, 2, 4, 1, 4, 4, 5, 7, 8, 1, 1, 5, 1, 2, 9, 3, 6, 8, 6, 3, 8, 3, 3, 1, 3, 9, 0, 9, 0, 8, 9
Offset: 0

Views

Author

Bernard Schott, Dec 18 2022

Keywords

Comments

The Cartesian equation of Sylvester's Bicorn curve is y^2*(m^2-x^2) = (x^2+2*m*y-m^2)^2, here with parameter m=1. The area is proportional to the square m^2 of parameter m.
Corresponding arc length is given by A228764.

Examples

			0.746455945439346463341461672758965758770535375107896820343...
		

References

  • M. Protat, Des Olympiades à l'Agrégation, Encadrement du bicorne, Problème 66, pp. 142-145, Ellipses, Paris 1997.

Crossrefs

Cf. A228764 (length).
Other area of curves: A019692 (deltoid), A197723 (cardioid), A122952 (nephroid), A180434 (Newton strophoid).

Programs

  • Maple
    evalf((16*sqrt(3) - 27)*Pi/3, 100);
  • Mathematica
    RealDigits[(16*Sqrt[3] - 27)*Pi/3, 10, 120][[1]] (* Amiram Eldar, Dec 18 2022 *)

Formula

Equals (16*sqrt(3) - 27)*Pi/3.
Previous Showing 11-12 of 12 results.