A144387
Triangle read by rows: row n gives the coefficients in the expansion of Sum_{j=0..n} A000040(j+1)*x^j*(1 - x)^(n - j).
Original entry on oeis.org
2, 2, 1, 2, -1, 4, 2, -3, 5, 3, 2, -5, 8, -2, 8, 2, -7, 13, -10, 10, 5, 2, -9, 20, -23, 20, -5, 12, 2, -11, 29, -43, 43, -25, 17, 7, 2, -13, 40, -72, 86, -68, 42, -10, 16, 2, -15, 53, -112, 158, -154, 110, -52, 26, 13, 2, -17, 68, -165, 270, -312, 264, -162, 78, -13, 18
Offset: 0
Triangle begins
2;
2, 1;
2, -1, 4;
2, -3, 5, 3;
2, -5, 8, -2, 8;
2, -7, 13, -10, 10, 5;
2, -9, 20, -23, 20, -5, 12;
2, -11, 29, -43, 43, -25, 17, 7;
2, -13, 40, -72, 86, -68, 42, -10, 16;
2, -15, 53, -112, 158, -154, 110, -52, 26, 13;
2, -17, 68, -165, 270, -312, 264, -162, 78, -13, 18;
...
Cf.
A122753,
A123018,
A123019,
A123021,
A123027,
A123199,
A123202,
A123217,
A123221,
A141720,
A144400,
A174128.
-
p[x_, n_] = Sum[Prime[k + 1]*x^k*(1 - x)^(n - k), {k, 0, n}];
Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten
-
def p(n,x): return sum( nth_prime(j+1)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
[T(n) for n in (0..12)] # G. C. Greubel, Jul 15 2021
A144400
Triangle read by rows: row n (n > 0) gives the coefficients of x^k (0 <= k <= n - 1) in the expansion of Sum_{j=0..n} A000931(j+4)*binomial(n, j)*x^(j - 1)*(1 - x)^(n - j).
Original entry on oeis.org
1, 2, -1, 3, -3, 1, 4, -6, 4, 0, 5, -10, 10, 0, -3, 6, -15, 20, 0, -18, 10, 7, -21, 35, 0, -63, 70, -24, 8, -28, 56, 0, -168, 280, -192, 49, 9, -36, 84, 0, -378, 840, -864, 441, -89, 10, -45, 120, 0, -756, 2100, -2880, 2205, -890, 145, 11, -55, 165, 0
Offset: 1
Triangle begins:
1;
2, -1;
3, -3, 1;
4, -6, 4, 0;
5, -10, 10, 0, -3;
6, -15, 20, 0, -18, 10;
7, -21, 35, 0, -63, 70, -24;
8, -28, 56, 0, -168, 280, -192, 49;
9, -36, 84, 0, -378, 840, -864, 441, -89;
10, -45, 120, 0, -756, 2100, -2880, 2205, -890, 145;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 22 2018
Cf.
A122753,
A123018,
A123019,
A123021,
A123027,
A123199,
A123202,
A123217,
A123221,
A141720,
A144387,
A174128.
-
a[n_]:= a[n]= If[n<3, Fibonacci[n], a[n-2] + a[n-3]];
p[x_, n_]:= Sum[a[k]*Binomial[n, k]*x^(k-1)*(1-x)^(n-k), {k, 0, n}];
Table[Coefficient[p[x, n], x, k], {n, 12}, {k, 0, n-1}]//Flatten
-
@CachedFunction
def f(n): return fibonacci(n) if (n<3) else f(n-2) + f(n-3)
def p(n,x): return sum( binomial(n,j)*f(j)*x^(j-1)*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
[T(n) for n in (1..12)] # G. C. Greubel, Jul 14 2021
A174128
Irregular triangle read by rows: row n (n > 0) is the expansion of Sum_{m=1..n} A001263(n,m)*x^(m - 1)*(1 - x)^(n - m).
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 3, -3, 1, 6, -4, -4, 2, 1, 10, 0, -20, 10, 1, 15, 15, -55, 15, 15, -5, 1, 21, 49, -105, -35, 105, -35, 1, 28, 112, -140, -266, 364, -56, -56, 14, 1, 36, 216, -84, -882, 756, 336, -504, 126, 1, 45, 375, 210, -2100, 672, 2520, -2100, 210, 210, -42
Offset: 1
Triangle begins
1;
1;
1, 1, -1;
1, 3, -3;
1, 6, -4, -4, 2;
1, 10, 0, -20, 10;
1, 15, 15, -55, 15, 15, -5;
1, 21, 49, -105, -35, 105, -35;
1, 28, 112, -140, -266, 364, -56, -56, 14;
1, 36, 216, -84, -882, 756, 336, -504, 126;
...
Cf.
A122753,
A123018,
A123019,
A123021,
A123027,
A123199,
A123202,
A123217,
A123221,
A141720,
A144387,
A144400.
-
p[x_, n_]:= p[x, n]= Sum[(Binomial[n, j]*Binomial[n, j-1]/n)*x^j*(1-x)^(n-j), {j, 1, n}]/x;
Table[CoefficientList[p[x, n], x], {n, 1, 12}]//Flatten
-
def p(n,x): return (1/(n*x))*sum( binomial(n,j)*binomial(n,j-1)*x^j*(1-x)^(n-j) for j in (1..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
[T(n) for n in (1..12)] # G. C. Greubel, Jul 14 2021
Comments