cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A127101 Numbers k such that k^2 divides 9^k - 1.

Original entry on oeis.org

1, 2, 4, 8, 10, 20, 40, 110, 136, 164, 220, 328, 440, 610, 680, 820, 1210, 1220, 1544, 1640, 2420, 2440, 2530, 4840, 5060, 5576, 6710, 7370, 7480, 7720, 9020, 10120, 11810, 13420, 13612, 14008, 14740, 18040, 18632, 19580
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007

Keywords

Crossrefs

Subset of A068382 (numbers k such that k divides 9^k - 1).

Programs

  • Mathematica
    Select[Range[20000], IntegerQ[(PowerMod[9, #, #^2 ]-1)/#^2 ]&]
  • PARI
    is(k) = Mod(9, k^2)^k == 1; \\ Amiram Eldar, May 21 2024

A127105 Numbers k such that k^2 divides 5^k-1.

Original entry on oeis.org

1, 2, 4, 6, 12, 42, 52, 84, 156, 186, 372, 1092, 1218, 1302, 1806, 2436, 2604, 2756, 3612, 4836, 5334, 7212, 8268, 10668, 12324, 15918, 18858, 24492, 31668, 31836, 33852, 37716, 37758, 46956, 50484, 52374, 55986, 57876, 71862, 75516, 86268
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007

Keywords

Comments

Subset of A067946 (numbers k such that k divides 5^k-1).

Crossrefs

Cf. A067946 (numbers k such that k divides 5^k-1).

Programs

  • Maple
    select(t -> (5 &^t - 1) mod (t^2) = 0, [$1..10^5]); # Robert Israel, Jul 15 2018
  • Mathematica
    Select[Range[30000], IntegerQ[(PowerMod[5, #, #^2 ]-1)/#^2 ]&]
  • PARI
    isok(n) = Mod(5, n^2)^n == 1; \\ Michel Marcus, Apr 23 2017

Extensions

More terms from Ryan Propper and Alexander Adamchuk, Jan 05 2007

A127107 Numbers n such that n^2 divides 7^n-1.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 20, 24, 40, 57, 60, 100, 114, 120, 156, 200, 220, 228, 258, 300, 312, 440, 456, 516, 600, 660, 780, 1032, 1100, 1140, 1320, 1560, 1640, 1752, 1860, 2172, 2200, 2280, 2580, 2964, 3300, 3660, 3720, 3820, 3900, 4344, 4632, 4902, 4920, 5060
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007

Keywords

Crossrefs

Cf. A127100, A127101, A127102, A127103, A123104, A127105, A127106, A127092. Cf. A067947 = numbers n such that n divides 7^n-1.

Programs

  • Mathematica
    Select[Range[10000], IntegerQ[(PowerMod[7, #, #^2 ]-1)/#^2 ]&]

A123142 Number of benzenoids with 23 hexagons, C_(2v) symmetry and containing n carbon atoms.

Original entry on oeis.org

2, 9, 33, 38, 235, 124, 704, 435, 2283, 1437, 6954, 3628, 17864, 9528, 43798, 24237, 106293, 53593, 228216, 104754, 431864, 188701, 760883, 300925, 1212591, 373411, 1536669, 305586, 1298746, 129710, 586556
Offset: 64

Views

Author

Parthasarathy Nambi, Oct 01 2006

Keywords

Examples

			If n=64 then the number of benzenoids with 23 hexagons with C_(2v) symmetry is 2.
If n=65 then the number of benzenoids with 23 hexagons with C_(2v) symmetry is 9.
If n=66 then the number of benzenoids with 23 hexagons with C_(2v) symmetry is 33.
If n=67 then the number of benzenoids with 23 hexagons with C_(2v) symmetry is 38.
If n=94 then the number of benzenoids with 23 hexagons with C_(2v) symmetry is 586556.
		

References

  • G. Brinkmann, G. Caporossi and P. Hansen, "A Survey and New Results on Computer Enumeration of Polyhex and Fusene Hydrocarbons", J. Chem. Inf. Comput. Sci., vol. 43 (2003) 842-851. See Table 6 column 7 on page 847.

Crossrefs

A123284 Number of polyhexes with 24 hexagons, C_(2v) symmetry and containing n carbon atoms.

Original entry on oeis.org

2, 34, 37, 173, 155, 657, 482, 2206, 1334, 6510, 3315, 18208, 7804, 47329, 16914, 114779, 33879, 258280, 60786, 532865, 98070, 987689, 137195, 1641862, 166882, 2358366, 146898, 2723100, 77267, 2164650, 0, 966300
Offset: 67

Views

Author

Parthasarathy Nambi, Oct 10 2006

Keywords

Comments

a(98) = 966300 is the last nonzero term. Sum(a(n)) = 12574028 = A120991(24). - Markus Voege, Jan 23 2014

Examples

			If n=67 then the number of polyhexes with 24 hexagons with C_(2v) symmetry is 2.
If n=68 then the number of polyhexes with 24 hexagons with C_(2v) symmetry is 34.
If n=69 then the number of polyhexes with 24 hexagons with C_(2v) symmetry is 37.
If n=70 then the number of polyhexes with 24 hexagons with C_(2v) symmetry is 173.
		

Crossrefs

Extensions

Series corrected a(97)=0 and a(98)=966300; keyword 'fini' by Markus Voege, Jan 23 2014

A123285 Number of fusenes with 22 hexagons, C_(3h) symmetry and containing 3n carbon atoms.

Original entry on oeis.org

1, 2, 8, 21, 60, 160, 281, 655, 1003, 1102
Offset: 21

Views

Author

Parthasarathy Nambi, Oct 10 2006

Keywords

Crossrefs

Extensions

Name and offset edited by Andrey Zabolotskiy, Nov 15 2023

A123286 Number of fusenes with 22 hexagons, D_(2h) symmetry and containing 2n carbon atoms.

Original entry on oeis.org

1, 3, 3, 6, 17, 19, 26, 32, 40, 54, 131, 70, 277, 51, 188
Offset: 31

Views

Author

Parthasarathy Nambi, Oct 10 2006

Keywords

Crossrefs

Extensions

Name and offset edited by Andrey Zabolotskiy, Nov 15 2023

A123287 Number of fusenes with 22 hexagons, C_(2h) symmetry and containing 2n carbon atoms.

Original entry on oeis.org

2, 32, 138, 510, 1630, 4757, 13276, 34345, 81379, 173257, 332556, 549920, 737676, 683310, 375524
Offset: 31

Views

Author

Parthasarathy Nambi, Oct 10 2006

Keywords

Crossrefs

Extensions

Name and offset edited by Andrey Zabolotskiy, Nov 15 2023

A123288 Number of fusenes with 22 hexagons, C_(2v) symmetry and containing n carbon atoms.

Original entry on oeis.org

4, 8, 56, 54, 212, 187, 783, 533, 2535, 1352, 7484, 3391, 21245, 8067, 55794, 16692, 135190, 31411, 291344, 52815, 574364, 76282, 971115, 76761, 1342969, 51319, 1274425, 0, 751033
Offset: 62

Views

Author

Parthasarathy Nambi, Oct 10 2006

Keywords

Crossrefs

Extensions

a(89) = 0 inserted by Andrey Zabolotskiy, Nov 09 2023

A123289 Number of fusenes with 23 hexagons, D_(2h) symmetry and containing 2n carbon atoms.

Original entry on oeis.org

1, 3, 3, 6, 13, 19, 28, 37, 55, 92, 91, 139, 114, 256, 0, 188
Offset: 32

Views

Author

Parthasarathy Nambi, Oct 10 2006

Keywords

Crossrefs

Extensions

Name and offset corrected and a(46) = 0 inserted by Andrey Zabolotskiy, Nov 09 2023
Showing 1-10 of 29 results. Next