A282293 Two-column array A(n, k) read by rows, where A(n, 1) and A(n, 2) respectively give values of q and p in the n-th double Wieferich prime pair, where p > q. Terms sorted first by increasing size of p, then by increasing size of q.
2, 1093, 83, 4871, 2903, 18787, 911, 318917, 3, 1006003, 5, 1645333507
Offset: 1
Examples
The primes 83 and 4871 satisfy 83^4870 == 1 (mod 23726641) and 4871^82 == 1 (mod 6889), respectively, so 83 and 4871 are terms of the sequence.
Links
- M. Aaltonen and K. Inkeri, Catalan's equation x^p - y^p = 1 and related congruences, Math. Comp. 56 (1991), 359-370.
- R. Ernvall and T. Metsänkylä, On the p-divisibility of Fermat quotients, Mathematics of Computation 66 (1997), 1353-1365.
- K. Inkeri, On Catalan's problem, Acta Arithmetica 9 (1964), 285-290.
- W. Keller and J. Richstein, Solutions of the congruence a^p-1 == 1 (mod p^r), Mathematics of Computation, 74 (2005), 927-936.
- B. Logan and M. J. Mossinghoff, Double Wieferich pairs and circulant Hadamard matrices, ResearchGate, 2015.
- P. Mihailescu, A class number free criterion for catalan's conjecture, Journal of Number Theory, Vol. 99, No. 2 (2003), 225-231.
- C. Pomerance, J. L. Selfridge and S. S. Wagstaff, The pseudoprimes to 25 * 10^9, Mathematics of Computation, 35 (1980), 1003-1026.
- R. Scott and R. Styer, On p^x-q^y=c and related three term exponential Diophantine equations with prime bases, Journal of Number Theory, Vol. 105, No. 2 (2004), 212-234.
- R. Steiner, Class number bounds and Catalan's equation, Mathematics of Computation 67 (1998), 1317-1322.
Programs
-
PARI
is_dwpp(n, k) = Mod(n, k^2)^(k-1)==1 && Mod(k, n^2)^(n-1)==1 search(x, y) = forprime(p=x, y, forprime(q=1, p-1, if(is_dwpp(p, q), print1(q, ", ", p, ", ")))) search(1, 1e6) \\ search pairs in the interval [1, 10^6]
Comments