cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A279042 Numbers k such that 2*k+1 and 10*k+1 are both triangular numbers (A000217).

Original entry on oeis.org

4455, 30537, 461938302, 3166172226, 47894687058501, 328275068740587, 4965816943137597372, 34036215673995404100, 514865832250497683700195, 3528942913182916419190605, 53382319214430283898266055610, 365887859090594924500524938502
Offset: 1

Views

Author

Colin Barker, Dec 04 2016

Keywords

Examples

			4455 is in the sequence because 2*4455+1 = 8911 and 10*4455+1 = 44551 are both triangular numbers.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 103682, -103682, -1, 1}, {4455, 30537, 461938302, 3166172226, 47894687058501}, 20] (* Vincenzo Librandi, Dec 05 2016 *)
  • PARI
    Vec(81*x*(55 + 322*x + 55*x^2) / ((1 - x)*(1 - 322*x + x^2)*(1 + 322*x + x^2)) + O(x^15))
    
  • PARI
    isok(k) = ispolygonal(2*k+1, 3) & ispolygonal(10*k+1, 3)

Formula

a(n) = a(n-1) + 103682*a(n-2) - 103682*a(n-3) - a(n-4) + a(n-5) for n>5.
G.f.: 81*x*(55 + 322*x + 55*x^2) / ((1 - x)*(1 - 322*x + x^2)*(1 + 322*x + x^2)).

A097579 Triangular numbers k such that 2*k-1 is also a triangular number.

Original entry on oeis.org

1, 28, 946, 32131, 1091503, 37078966, 1259593336, 42789094453, 1453569618061, 49378577919616, 1677418079648878, 56982836130142231, 1935739010345186971, 65758143515606214778, 2233841140520266115476, 75884840634173441711401
Offset: 1

Views

Author

Vladeta Jovovic, Aug 29 2004

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[x*(1 - 7*x + x^2)/((1 - x)*(1 - 34*x + x^2)), {x, 0, 16}], x] (* Robert G. Wilson v, Sep 01 2004 *)
    LinearRecurrence[{35,-35,1},{1,28,946},20] (* Harvey P. Dale, Aug 03 2025 *)

Formula

G.f.: x*(1-7*x+x^2)/((1-x)*(1-34*x+x^2)).

Extensions

More terms from Robert G. Wilson v, Sep 01 2004
Previous Showing 11-12 of 12 results.