cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A126912 Numbers k such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^15 is prime.

Original entry on oeis.org

17, 47, 71, 72, 95, 99, 107, 113, 123, 134, 135, 147, 159, 239, 257, 261, 263, 278, 299, 324, 348, 435, 477, 500, 521, 534, 536, 546, 563, 567, 585, 633, 635, 642, 716, 737, 750, 753, 852, 905, 974, 1088, 1178, 1181, 1205, 1272, 1283, 1298, 1311, 1331, 1356
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^15], AppendTo[a, n]], {n, 1, 1400}]; a
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^15) \\ Charles R Greathouse IV, Jun 13 2017

A126913 Numbers n such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^16 + k^17 is prime.

Original entry on oeis.org

2, 22, 38, 102, 128, 130, 172, 232, 250, 292, 378, 404, 424, 458, 472, 490, 510, 600, 608, 702, 774, 802, 868, 888, 938, 950, 1010, 1140, 1204, 1220, 1274, 1294, 1328, 1372, 1394, 1398, 1402, 1412, 1418, 1502, 1564, 1580, 1602, 1670, 1692, 1792, 1800
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^16 + n^17], AppendTo[a, n]], {n, 1, 1400}]; a
    Select[Range[2000],PrimeQ[Total[#^{0,2,4,6,8,10,12,14,16,17}]]&] (* Harvey P. Dale, Jan 07 2023 *)
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^16+n^17) \\ Charles R Greathouse IV, Jun 13 2017

A126914 Numbers n such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^16 + k^18 + k^19 is prime.

Original entry on oeis.org

1, 9, 37, 40, 60, 69, 85, 114, 147, 156, 174, 183, 255, 289, 312, 324, 336, 349, 361, 373, 418, 451, 493, 499, 511, 520, 534, 549, 649, 657, 673, 676, 715, 741, 787, 855, 862, 874, 883, 888, 897, 952, 960, 1021, 1087, 1092, 1104, 1126, 1141, 1147, 1171, 1209
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^16 + n^18 + n^19], AppendTo[a, n]], {n, 1, 1400}]; a
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^16+n^18+n^19) \\ Charles R Greathouse IV, Jun 13 2017

A126915 Numbers k such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^16 + k^18 + k^20 + k^21 is prime.

Original entry on oeis.org

2, 6, 12, 60, 68, 138, 270, 446, 488, 620, 656, 798, 872, 942, 950, 1136, 1140, 1256, 1400, 1418, 1506, 1638, 1776, 1922, 1992, 2070, 2082, 2096, 2220, 2346, 2462, 2580, 2606, 2916
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Magma
    [k:k in [1..3000]| IsPrime(1+k^2+k^4+k^6+k^8+k^10+k^12+k^14+k^16+ k^18+k^20 +k^21)]; // Marius A. Burtea, Feb 11 2020
  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^16 + n^18 + n^20 + n^21], AppendTo[a, n]], {n, 1, 1400}]; a
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^16+n^18+n^20+n^21) \\ Charles R Greathouse IV, Jun 13 2017
    
Previous Showing 11-14 of 14 results.