A289258 Prime factors of numbers in A289257.
3, 19, 163, 1459, 8803, 17497, 52489, 78787, 164617, 370387
Offset: 1
Links
- Alexander Kalmynin, On Novák numbers, arXiv:1611.00417 [math.NT], 2016. See Theorem 7 p. 11.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
select(n -> n mod numtheory:-phi(n) = numtheory:-lambda(n), [seq(i,i=2..100000,2)]); # Robert Israel, Aug 04 2017
Select[Range[10^5], Mod[#, EulerPhi@ #] == CarmichaelLambda@ # &] (* Michael De Vlieger, Jul 23 2017 *)
isok(n) = (n % eulerphi(n)) == lcm(znstar(n)[2]); \\ Michel Marcus, Jul 23 2017
# Using function 'Clausen' from A160014. aList := m -> select(k -> irem(Clausen(k, 2), Clausen(k, 0)) = 0, [seq(1..m)]): aList(3500);
Select[Range[1, 10^6, 2], CompositeQ[#] && And @@ Divisible[# - 1, CarmichaelLambda[# + {-1, 0}]] &] (* Amiram Eldar, Aug 12 2024 *)
f(n) = lcm(znstar(n)[2]); \\ A002322 isok(k) = !isprime(k) && !((k-1) % f(k)) && !((k-1) % f(k-1)); \\ Michel Marcus, Aug 13 2024
3 is not a term because 2^2 == 1 (mod 3) but 1^1 !== 2 (mod 3). 10 is not a term because 13^13 == 3 (mod 10) but 3^3 !== 13 (mod 10). 20 is a term because 1^1 == 1 (mod 20), 3^3 == 7 (mod 20), 7^7 == 3 (mod 20), 9^9 == 9 (mod 20), 11^11 == 11 (mod 20), 13^13 == 13 (mod 20), 17^17 == 17 (mod 20), 19^19 == 19 (mod 20), and A002322(20) = 4 divides 20.
for(i=1, 144, my(j=divisors(131040)[i]); if(j%lcm(znstar(j)[2])==0, print1(j, ", ")))
Comments