cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A290035 Number of set partitions of [n] having exactly six blocks of size > 1.

Original entry on oeis.org

10395, 405405, 8828820, 142101960, 1889157270, 21997025050, 232434862660, 2281515816580, 21144158620585, 187205367167455, 1597460349645160, 13226705948208060, 106823347196076588, 845052099612035700, 6569883153685651800, 50334986592592563576
Offset: 12

Views

Author

Alois P. Heinz, Jul 18 2017

Keywords

Crossrefs

Column k=6 of A124324.
Cf. A290034.

Formula

E.g.f.: (exp(x)-x-1)^6/6!*exp(x).
G.f.: -(46416180096*x^15 -267702314880*x^14 +715470788032*x^13 -1174802003648*x^12 +1324630789300*x^11 -1085757157800*x^10 +667971384675*x^9 -313912715655*x^8 +113562125600*x^7 -31611210400*x^6 +6712800710*x^5 -1067591910*x^4 +123053700*x^3 -9702000*x^2 +467775*x -10395)*x^12 / ((7*x-1) *(6*x-1)^2 *(5*x-1)^3 *(4*x-1)^4 *(3*x-1)^5 *(2*x-1)^6 *(x-1)^7).
a(0) = a(1) = 0, for n>1 a(n) = 7*a(n-1) + (n-1)*A290034(n-2). - Ray Chandler, Jul 21 2017

A290036 Number of set partitions of [n] having exactly seven blocks of size > 1.

Original entry on oeis.org

135135, 6756750, 186486300, 3765521760, 62239847670, 893865232260, 11567184248620, 138167790320560, 1549369653596765, 16513475306458130, 168849390493503720, 1668236066705023200, 16016472213542100300, 150103132298249730600, 1378211903535510443400
Offset: 14

Views

Author

Alois P. Heinz, Jul 18 2017

Keywords

Crossrefs

Column k=7 of A124324.
Cf. A290035.

Formula

E.g.f.: (exp(x)-x-1)^7/7!*exp(x).
G.f.: -(1865750631174144*x^21 -13945050326997504*x^20 +49328717299610112*x^19 -109804126032508544*x^18 +172501534253023360*x^17 -203317256909646880*x^16 +186573768183915112*x^15 -136528527507974140*x^14 +80943939197055550*x^13 -39285221171765415*x^12 +15705856242821360*x^11 -5186986300225730*x^10 +1414798298063150*x^9 -317670047760065*x^8 +58326655226840*x^7 -8663283789160*x^6 +1024105011930*x^5 -94030401465*x^4 +6459332880*x^3 -312161850*x^2 +9459450*x -135135)*x^14 / ((8*x-1) *(7*x-1)^2 *(6*x-1)^3 *(5*x-1)^4 *(4*x-1)^5 *(3*x-1)^6 *(2*x-1)^7 *(x-1)^8).
a(0) = a(1) = 0, for n>1 a(n) = 8*a(n-1) + (n-1)*A290035(n-2). - Ray Chandler, Jul 21 2017

A290037 Number of set partitions of [n] having exactly eight blocks of size > 1.

Original entry on oeis.org

2027025, 126351225, 4307428125, 106546244805, 2141473308975, 37150564425975, 577265949054795, 8235084928545475, 109751266389634870, 1384084804861708950, 16677998006092973550, 193476119789167365150, 2173729827868142994450, 23766456155164279406850
Offset: 16

Views

Author

Alois P. Heinz, Jul 18 2017

Keywords

Crossrefs

Column k=8 of A124324.
Cf. A290036.

Formula

E.g.f.: (exp(x)-x-1)^8/8!*exp(x).
a(0) = a(1) = 0, for n>1 a(n) = 9*a(n-1) + (n-1)*A290036(n-2). - Ray Chandler, Jul 21 2017

A290038 Number of set partitions of [n] having exactly nine blocks of size > 1.

Original entry on oeis.org

34459425, 2618916300, 108030297375, 3211227869850, 77083218186975, 1588144599241200, 29158562820672285, 489227666491814250, 7636058324659014250, 112346788172994575200, 1573773827894456037850, 21155069633041246602700, 274588861338588612866050
Offset: 18

Views

Author

Alois P. Heinz, Jul 18 2017

Keywords

Crossrefs

Column k=9 of A124324.
Cf. A290037.

Formula

E.g.f.: (exp(x)-x-1)^9/9!*exp(x).
a(0) = a(1) = 0, for n>1 a(n) = 10*a(n-1) + (n-1)*A290037(n-2). - Ray Chandler, Jul 21 2017

A355144 Number T(n,k) of partitions of [n] having exactly k blocks of size at least three; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.

Original entry on oeis.org

1, 1, 2, 4, 1, 10, 5, 26, 26, 76, 117, 10, 232, 540, 105, 764, 2445, 931, 2620, 11338, 6909, 280, 9496, 53033, 48546, 4900, 35696, 253826, 324753, 64295, 140152, 1235115, 2131855, 691075, 15400, 568504, 6142878, 13792779, 6739876, 400400, 2390480, 31126539, 88890880, 61274213, 7217210
Offset: 0

Views

Author

Alois P. Heinz, Jun 20 2022

Keywords

Examples

			T(4,1) = 5: 1234, 123|4, 124|3, 134|2, 1|234.
T(6,2) = 10: 123|456, 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234.
Triangle T(n,k) begins:
       1;
       1;
       2;
       4,       1;
      10,       5;
      26,      26;
      76,     117,      10;
     232,     540,     105;
     764,    2445,     931;
    2620,   11338,    6909,    280;
    9496,   53033,   48546,   4900;
   35696,  253826,  324753,  64295;
  140152, 1235115, 2131855, 691075, 15400;
  ...
		

Crossrefs

Column k=0 gives A000085.
Row sums give A000110.
T(3n,n) gives A025035.

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
         `if`(i>2, x, 1)*binomial(n-1, i-1)*b(n-i), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Jun 20 2022
  • Mathematica
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[If[i > 2, x, 1]*
         Binomial[n - 1, i - 1]*b[n - i], {i, 1, n}]]];
    T[n_] := CoefficientList[b[n], x];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 25 2022, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A288785(n).

A290039 Number of set partitions of [n] having exactly ten blocks of size > 1.

Original entry on oeis.org

654729075, 59580345825, 2924020048950, 102811233675150, 2903837588727075, 70057683857786625, 1499598592952460000, 29215503851264230500, 527544117129699920250, 8948695357270547228350, 144075089938915244609500, 2219478078319305088785500
Offset: 20

Views

Author

Alois P. Heinz, Jul 18 2017

Keywords

Crossrefs

Column k=10 of A124324.
Cf. A290038.

Formula

E.g.f.: (exp(x)-x-1)^10/10!*exp(x).
a(0) = a(1) = 0, for n>1 a(n) = 11*a(n-1) + (n-1)*A290038(n-2). - Ray Chandler, Jul 21 2017
Previous Showing 11-16 of 16 results.