cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A145040 Primes p such that 2^p-1 is prime and congruent to 31 mod 5!.

Original entry on oeis.org

5, 13, 17, 61, 89, 521, 2281, 3217, 4253, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 132049, 859433, 1398269, 2976221, 3021377, 6972593, 13466917, 30402457, 32582657, 42643801, 43112609, 57885161
Offset: 1

Views

Author

Artur Jasinski, Sep 30 2008

Keywords

Comments

Mersenne numbers (with the exception of the first one) are congruent to 7 or 31 mod 5!. This sequence is a subsequence of A000043.
Is this 2 together with the terms of A112634? - R. J. Mathar, Mar 18 2009
Yes. An odd index p > 2 will be congruent to either 1 or 3 mod 4. If it is 1, then 2^p = 2^(4k+1) will be congruent to 2 mod 5, to 0 mod 4, and to 2 mod 3. This completely determines 2^p (and hence 2^p - 1) mod 5!. The other case, when p is congruent to 3 mod 4, will make 2^p congruent to 3 mod 5, to 0 mod 4, and to 2 mod 3. This leads to the other (distinct) value of 2^p mod 5!. This proves that this sequence is just A112634 without the initial term 2. - Jeppe Stig Nielsen, Jan 02 2018
From Jinyuan Wang, Nov 24 2019: (Start)
2^a(n) - 1 is congruent to 1 mod 5 since a(n) is congruent to 1 mod 4, so 5^(2^(a(n)-1) - 1) == (5, 2^a(n) - 1) == (2^a(n) - 1, 5)*(-1)^(2^a(n) - 1) == 1 (mod 2^a(n) - 1), where (m,p) is the Legendre symbol.
Conjecture: For n > 1, the Mersenne number M(n) = 2^n - 1 is in this sequence iff 5^M(n-1) == 1 (mod M(n)). (End)

Crossrefs

Programs

  • Mathematica
    p = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609}; a = {}; Do[If[Mod[2^p[[n]] - 1, 5! ] == 31, AppendTo[a, p[[n]]]], {n, 1, Length[p]}]; a
    Select[MersennePrimeExponent[Range[48]], PowerMod[2, #, 120] == 32 &] (* Amiram Eldar, Oct 19 2024 *)
  • PARI
    isok(p) = isprime(p) && isprime(q=2^p-1) && ((q % 120)==31); \\ Michel Marcus, Jan 06 2018

Formula

a(n) = A112634(n+1). - Jeppe Stig Nielsen, Jan 02 2018

Extensions

42643801 inserted by R. J. Mathar, Jul 31 2009
a(28) from Amiram Eldar, Oct 19 2024

A135984 a(n) = 24(prime(n))+7.

Original entry on oeis.org

55, 79, 127, 175, 271, 319, 415, 463, 559, 703, 751, 895, 991, 1039, 1135, 1279, 1423, 1471, 1615, 1711, 1759, 1903, 1999, 2143, 2335, 2431, 2479, 2575, 2623, 2719, 3055, 3151, 3295, 3343, 3583, 3631, 3775, 3919, 4015, 4159, 4303, 4351, 4591, 4639, 4735
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[24*Prime[n] + 7, {n, 1, 100}]

A135985 Prime numbers of the form 24*p + 7 where p is prime.

Original entry on oeis.org

79, 127, 271, 463, 751, 991, 1039, 1279, 1423, 1471, 1759, 1999, 2143, 2719, 3343, 3583, 3631, 3919, 4159, 4591, 4639, 4783, 5503, 5743, 5791, 7039, 7951, 8623, 9103, 9199, 9343, 9631, 10111, 10399, 10639, 11071, 11119, 11503, 12511
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

  • Maple
    select(t -> isprime(t) and isprime((t-7)/24), [seq(p,p=7..20000,24)]); # Robert Israel, Oct 16 2018
  • Mathematica
    a = {}; Do[If[PrimeQ[24(Prime[n]) + 7], AppendTo[a, 24(Prime[n]) + 7]], {n, 1, 100}]; a

A233008 p mod 24, where p is such that 2^p - 1 is prime (see Mersenne primes, A000043).

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 7, 13, 17, 11, 7, 17, 7, 7, 19, 1, 1, 5, 7, 17, 5, 5, 17, 5, 1, 1, 11, 7, 1, 19, 23, 17, 19, 5, 5, 17, 17, 13, 19, 7, 23, 1, 17, 11, 1, 17, 17
Offset: 1

Views

Author

Freimut Marschner, Dec 03 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Mod[#, 24] &@ MersennePrimeExponent@ Range@ 45 (* Michael De Vlieger, Jul 22 2018 *)

Formula

a(n) = A000043(n) mod 24.

Extensions

a(46)-a(47) corrected and a(48) removed by Gord Palameta, Jul 21 2018
a(48) from Amiram Eldar, Oct 15 2024

A135658 Nonprimes of the form 4x^2-4xy+7y^2.

Original entry on oeis.org

4, 15, 16, 24, 28, 36, 40, 55, 60, 63, 64, 87, 88, 96, 100, 112, 124, 132, 135, 144, 159, 160, 168, 175, 196, 216, 220, 231, 232, 240, 247
Offset: 1

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Comments

Because 4x^2-4*x*y+7*y^2 = (2*x-y)^2+6*y^2, this is a subsequence of A002481. - R. J. Mathar, Jan 18 2021

Crossrefs

Programs

  • Mathematica
    Do[Do[w = 4x^2 - 4x y + 7y^2; If[w > 0, If[PrimeQ[w],[null], AppendTo[a, w]]], {x, 0, 100}], {y, 0, 100}]; Union[a]
Previous Showing 21-25 of 25 results.