cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 174 results. Next

A345168 Numbers k such that the k-th composition in standard order is not alternating.

Original entry on oeis.org

3, 7, 10, 11, 14, 15, 19, 21, 23, 26, 27, 28, 29, 30, 31, 35, 36, 37, 39, 42, 43, 46, 47, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 69, 71, 73, 74, 75, 78, 79, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 99, 100, 101, 103, 104, 105, 106, 107, 110
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The sequence of terms together with their binary indices begins:
     3: (1,1)          35: (4,1,1)        59: (1,1,2,1,1)
     7: (1,1,1)        36: (3,3)          60: (1,1,1,3)
    10: (2,2)          37: (3,2,1)        61: (1,1,1,2,1)
    11: (2,1,1)        39: (3,1,1,1)      62: (1,1,1,1,2)
    14: (1,1,2)        42: (2,2,2)        63: (1,1,1,1,1,1)
    15: (1,1,1,1)      43: (2,2,1,1)      67: (5,1,1)
    19: (3,1,1)        46: (2,1,1,2)      69: (4,2,1)
    21: (2,2,1)        47: (2,1,1,1,1)    71: (4,1,1,1)
    23: (2,1,1,1)      51: (1,3,1,1)      73: (3,3,1)
    26: (1,2,2)        52: (1,2,3)        74: (3,2,2)
    27: (1,2,1,1)      53: (1,2,2,1)      75: (3,2,1,1)
    28: (1,1,3)        55: (1,2,1,1,1)    78: (3,1,1,2)
    29: (1,1,2,1)      56: (1,1,4)        79: (3,1,1,1,1)
    30: (1,1,1,2)      57: (1,1,3,1)      83: (2,3,1,1)
    31: (1,1,1,1,1)    58: (1,1,2,2)      84: (2,2,3)
		

Crossrefs

The complement is A345167.
These compositions are counted by A345192.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A025047 counts alternating or wiggly compositions, directed A025048, A025049.
A344604 counts alternating compositions with twins.
A345194 counts alternating patterns (with twins: A344605).
A345164 counts alternating permutations of prime indices (with twins: A344606).
A345165 counts partitions without a alternating permutation, ranked by A345171.
A345170 counts partitions with a alternating permutation, ranked by A345172.
A348610 counts alternating ordered factorizations, complement A348613.
Statistics of standard compositions:
- Length is A000120.
- Constant runs are A124767.
- Heinz number is A333219.
- Number of maximal anti-runs is A333381.
- Runs-resistance is A333628.
- Number of distinct parts is A334028.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are A114994.
- Weakly increasing compositions (multisets) are A225620.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Anti-run compositions are A333489.
- Non-anti-run compositions are A348612.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[0,100],Not@*wigQ@*stc]

A373953 Sum of run-compression of the n-th integer composition in standard order.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 3, 1, 4, 4, 2, 3, 4, 4, 3, 1, 5, 5, 5, 4, 5, 3, 5, 3, 5, 5, 3, 4, 4, 4, 3, 1, 6, 6, 6, 5, 3, 6, 6, 4, 6, 6, 2, 3, 6, 6, 5, 3, 6, 6, 6, 5, 6, 4, 6, 4, 5, 5, 3, 4, 4, 4, 3, 1, 7, 7, 7, 6, 7, 7, 7, 5, 7, 4, 5, 6, 7, 7, 6, 4, 7, 7, 7, 6, 5, 3, 5
Offset: 0

Views

Author

Gus Wiseman, Jun 25 2024

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define the (run-) compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has compression (1,2,1).

Examples

			The standard compositions and their compressions and compression sums begin:
   0: ()        --> ()      --> 0
   1: (1)       --> (1)     --> 1
   2: (2)       --> (2)     --> 2
   3: (1,1)     --> (1)     --> 1
   4: (3)       --> (3)     --> 3
   5: (2,1)     --> (2,1)   --> 3
   6: (1,2)     --> (1,2)   --> 3
   7: (1,1,1)   --> (1)     --> 1
   8: (4)       --> (4)     --> 4
   9: (3,1)     --> (3,1)   --> 4
  10: (2,2)     --> (2)     --> 2
  11: (2,1,1)   --> (2,1)   --> 3
  12: (1,3)     --> (1,3)   --> 4
  13: (1,2,1)   --> (1,2,1) --> 4
  14: (1,1,2)   --> (1,2)   --> 3
  15: (1,1,1,1) --> (1)     --> 1
		

Crossrefs

Positions of 1's are A000225.
Counting partitions by this statistic gives A116861, by length A116608.
For length instead of sum we have A124767, counted by A238279 and A333755.
Compositions counted by this statistic are A373949, opposite A373951.
A037201 gives compression of first differences of primes, halved A373947.
A066099 lists the parts of all compositions in standard order.
A114901 counts compositions with no isolated parts.
A240085 counts compositions with no unique parts.
A333489 ranks anti-runs, counted by A003242.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n]]],{n,0,100}]

Formula

a(n) = A029837(A373948(n)).

A333227 Numbers k such that the k-th composition in standard order is pairwise coprime, where a singleton is not coprime unless it is (1).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 44, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 71, 72, 75, 77, 78, 79, 80, 83, 89, 92, 95, 96, 97, 99, 101, 102, 103, 105
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2020

Keywords

Comments

This is the definition used for CoprimeQ in Mathematica.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The sequence together with the corresponding compositions begins:
   1: (1)          27: (1,2,1,1)      55: (1,2,1,1,1)
   3: (1,1)        28: (1,1,3)        56: (1,1,4)
   5: (2,1)        29: (1,1,2,1)      57: (1,1,3,1)
   6: (1,2)        30: (1,1,1,2)      59: (1,1,2,1,1)
   7: (1,1,1)      31: (1,1,1,1,1)    60: (1,1,1,3)
   9: (3,1)        33: (5,1)          61: (1,1,1,2,1)
  11: (2,1,1)      35: (4,1,1)        62: (1,1,1,1,2)
  12: (1,3)        37: (3,2,1)        63: (1,1,1,1,1,1)
  13: (1,2,1)      38: (3,1,2)        65: (6,1)
  14: (1,1,2)      39: (3,1,1,1)      66: (5,2)
  15: (1,1,1,1)    41: (2,3,1)        67: (5,1,1)
  17: (4,1)        44: (2,1,3)        68: (4,3)
  18: (3,2)        47: (2,1,1,1,1)    71: (4,1,1,1)
  19: (3,1,1)      48: (1,5)          72: (3,4)
  20: (2,3)        49: (1,4,1)        75: (3,2,1,1)
  23: (2,1,1,1)    50: (1,3,2)        77: (3,1,2,1)
  24: (1,4)        51: (1,3,1,1)      78: (3,1,1,2)
  25: (1,3,1)      52: (1,2,3)        79: (3,1,1,1,1)
		

Crossrefs

A different ranking of the same compositions is A326675.
Ignoring repeated parts gives A333228.
Let q(k) be the k-th composition in standard order:
- The terms of q(k) are row k of A066099.
- The sum of q(k) is A070939(k).
- The product of q(k) is A124758(k).
- q(k) has A124767(k) runs and A333381(k) anti-runs.
- The GCD of q(k) is A326674(k).
- The Heinz number of q(k) is A333219(k).
- The LCM of q(k) is A333226(k).
Coprime or singleton sets are ranked by A087087.
Strict compositions are ranked by A233564.
Constant compositions are ranked by A272919.
Relatively prime compositions appear to be ranked by A291166.
Normal compositions are ranked by A333217.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,120],CoprimeQ@@stc[#]&]

A037201 Differences between consecutive primes (A001223) but with repeats omitted.

Original entry on oeis.org

1, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 6, 4, 6, 2, 10, 2, 4, 2, 12, 4, 2, 4, 6, 2, 10, 6, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6, 4, 6, 8, 4
Offset: 1

Views

Author

Keywords

Comments

Also the run-compression of the sequence of first differences of prime numbers, where we define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, we can remove all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1). - Gus Wiseman, Sep 16 2024

Crossrefs

This is the run-compression of A001223 = first differences of A000040.
The repeats were at positions A064113 before being omitted.
Adding up runs instead of compressing them gives A373822.
The even terms halved are A373947.
For prime-powers instead of prime numbers we have A376308.
Positions of first appearances are A376520, sorted A376521.
A003242 counts compressed compositions.
A333254 lists run-lengths of differences between consecutive primes.
A373948 encodes compression using compositions in standard order.

Programs

  • Haskell
    a037201 n = a037201_list !! (n-1)
    a037201_list = f a001223_list where
       f (x:xs@(x':_)) | x == x'   = f xs
                       | otherwise = x : f xs
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Mathematica
    Flatten[Split[Differences[Prime[Range[150]]]]/.{(k_)..}:>k] (* based on a program by Harvey P. Dale, Jun 21 2012 *)
  • PARI
    t=0;p=2;forprime(q=3,1e3,if(q-p!=t,print1(q-p", "));t=q-p;p=q) \\ Charles R Greathouse IV, Feb 27 2012

Formula

a(n>1) = 2*A373947(n-1). - Gus Wiseman, Sep 16 2024

Extensions

Offset corrected by Reinhard Zumkeller, Feb 27 2012

A333214 Positions of adjacent unequal terms in the sequence of differences between primes.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75
Offset: 1

Views

Author

Gus Wiseman, Mar 15 2020

Keywords

Examples

			The sequence of differences between primes splits into the following runs: (1), (2,2), (4), (2), (4), (2), (4), (6), (2), (6), (4), (2), (4), (6,6), (2), (6), (4), (2), (6), (4), (6).
		

Crossrefs

The version for the Kolakoski sequence is A054353.
Complement of A064113 (the version for adjacent equal terms).
Runs of compositions in standard order are counted by A124767.
A triangle for runs of compositions is A238279.
The version for strict ascents is A258025.
The version for strict descents is A258026.
The version for weak ascents is A333230.
The version for weak descents is A333231.
First differences are A333254 (if the first term is 0).

Programs

  • Mathematica
    Accumulate[Length/@Split[Differences[Array[Prime,100]],#1==#2&]]//Most
    - or -
    Select[Range[100],Prime[#+1]-Prime[#]!=Prime[#+2]-Prime[#+1]&]

Formula

Numbers k such that prime(k+1) - prime(k) != prime(k+2) - prime(k+1).

A353932 Irregular triangle read by rows where row k lists the run-sums of the k-th composition in standard order.

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 1, 2, 3, 4, 3, 1, 4, 2, 2, 1, 3, 1, 2, 1, 2, 2, 4, 5, 4, 1, 3, 2, 3, 2, 2, 3, 4, 1, 2, 1, 2, 2, 3, 1, 4, 1, 3, 1, 1, 4, 1, 2, 2, 2, 3, 2, 2, 1, 3, 2, 5, 6, 5, 1, 4, 2, 4, 2, 6, 3, 2, 1, 3, 1, 2, 3, 3, 2, 4, 2, 3, 1, 6, 4, 2, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Triangle begins:
  1
  2
  2
  3
  2 1
  1 2
  3
  4
  3 1
  4
  2 2
  1 3
  1 2 1
For example, composition 350 in standard order is (2,2,1,1,1,2), so row 350 is (4,3,2).
		

Crossrefs

Row-sums are A029837.
Standard compositions are listed by A066099.
Row-lengths are A124767.
These compositions are ranked by A353847.
Row k has A353849(k) distinct parts.
The version for partitions is A354584, ranked by A353832.
A005811 counts runs in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total/@Split[stc[n]],{n,0,30}]

A373954 Excess run-compression of standard compositions. Sum of all parts minus sum of compressed parts of the n-th integer composition in standard order.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 1, 3, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 2, 1, 1, 1, 2, 4, 0, 0, 0, 1, 3, 0, 0, 2, 0, 0, 4, 3, 0, 0, 1, 3, 0, 0, 0, 1, 0, 2, 0, 2, 1, 1, 3, 2, 2, 2, 3, 5, 0, 0, 0, 1, 0, 0, 0, 2, 0, 3, 2, 1, 0, 0, 1, 3, 0, 0, 0, 1, 2, 4, 2
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2024

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define the (run-) compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has compression (1,2,1).

Examples

			The excess compression of (2,1,1,3) is 1, so a(92) = 1.
		

Crossrefs

For length instead of sum we have A124762, counted by A106356.
The opposite for length is A124767, counted by A238279 and A333755.
Positions of zeros are A333489, counted by A003242.
Positions of nonzeros are A348612, counted by A131044.
Compositions counted by this statistic are A373951, opposite A373949.
Compression of standard compositions is A373953.
Positions of ones are A373955.
A037201 gives compression of first differences of primes, halved A373947.
A066099 lists the parts of all compositions in standard order.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by this statistic, by length A116608.
A240085 counts compositions with no unique parts.
A333627 takes the rank of a composition to the rank of its run-lengths.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[stc[n]]-Total[First/@Split[stc[n]]],{n,0,100}]

Formula

a(n) = A029837(n) - A373953(n).

A374683 Irregular triangle read by rows where row n lists the leaders of strictly increasing runs in the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 3, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal strictly increasing subsequences of the 1234567th composition in standard order are ((3),(2),(1,2),(2),(1,2,5),(1),(1),(1)), so row 1234567 is (3,2,1,2,1,1,1,1).
The nonnegative integers, corresponding compositions, and leaders of strictly increasing runs begin:
   0:      () -> ()         15: (1,1,1,1) -> (1,1,1,1)
   1:     (1) -> (1)        16:       (5) -> (5)
   2:     (2) -> (2)        17:     (4,1) -> (4,1)
   3:   (1,1) -> (1,1)      18:     (3,2) -> (3,2)
   4:     (3) -> (3)        19:   (3,1,1) -> (3,1,1)
   5:   (2,1) -> (2,1)      20:     (2,3) -> (2)
   6:   (1,2) -> (1)        21:   (2,2,1) -> (2,2,1)
   7: (1,1,1) -> (1,1,1)    22:   (2,1,2) -> (2,1)
   8:     (4) -> (4)        23: (2,1,1,1) -> (2,1,1,1)
   9:   (3,1) -> (3,1)      24:     (1,4) -> (1)
  10:   (2,2) -> (2,2)      25:   (1,3,1) -> (1,1)
  11: (2,1,1) -> (2,1,1)    26:   (1,2,2) -> (1,2)
  12:   (1,3) -> (1)        27: (1,2,1,1) -> (1,1,1)
  13: (1,2,1) -> (1,1)      28:   (1,1,3) -> (1,1)
  14: (1,1,2) -> (1,1)      29: (1,1,2,1) -> (1,1,1)
		

Crossrefs

Row-leaders are A065120.
Row-lengths are A124768.
Other types of runs: A374251, A374515, A374740.
The weak version is A374629, sum A374630, length A124766.
Row-sums are A374684.
Positions of identical rows are A374685, counted by A374686.
Positions of distinct (strict) rows are A374698, counted by A374687.
The opposite version is A374757, sum A374758, length A124769.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124767, A333381.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n],Less],{n,0,100}]

A333224 Number of distinct positive consecutive subsequence-sums of the k-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 3, 3, 1, 3, 2, 4, 3, 4, 4, 4, 1, 3, 3, 5, 3, 5, 4, 5, 3, 4, 5, 5, 5, 5, 5, 5, 1, 3, 3, 5, 2, 5, 5, 6, 3, 6, 3, 6, 5, 6, 5, 6, 3, 4, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 1, 3, 3, 5, 3, 6, 6, 7, 3, 5, 5, 7, 4, 6, 6, 7, 3, 6, 4, 7, 5, 7, 6
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2020

Keywords

Comments

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The composition (4,3,1,2) has positive subsequence-sums 1, 2, 3, 4, 6, 7, 8, 10, so a(550) = 8.
		

Crossrefs

Dominated by A124770.
Compositions where every subinterval has a different sum are counted by A169942 and A325677 and ranked by A333222. The case of partitions is counted by A325768 and ranked by A325779.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack partitions are counted by A108917 and A325592 and ranked by A299702.
Strict knapsack partitions are counted by A275972 and ranked by A059519 and A301899.
Knapsack compositions are counted by A325676 and A325687 and ranked by A333223. The case of partitions is counted by A325769 and ranked by A325778, for which the number of distinct consecutive subsequences is given by A325770.
Allowing empty subsequences gives A333257.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[ReplaceList[stc[n],{_,s__,_}:>Plus[s]]]],{n,0,100}]

Formula

a(n) = A333257(n) - 1.

A334028 Number of distinct parts in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 3, 3, 2, 2, 3, 1, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 77th composition is (3,1,2,1), so a(77) = 3.
		

Crossrefs

Number of distinct prime indices is A001221.
Positions of first appearances (offset 1) are A246534.
Positions of 1's are A272919.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Aperiodic compositions are A328594.
- Rotational period is A333632.
- Dealings are A333939.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[stc[n]]],{n,0,100}]
Previous Showing 31-40 of 174 results. Next